The contamination of bivalve shellfish with norovirus from human fecal sources is recognized as an important human health risk. Standardized quantitative methods for the detection of norovirus in molluscan shellfish are now available, and viral standards are being considered in the European Union and internationally. This 2-year systematic study aimed to investigate the impact of the application of these methods to the monitoring of norovirus contamination in oyster production areas in the United Kingdom. Twenty-four monthly samples of oysters from 39 United Kingdom production areas, chosen to represent a range of potential contamination risk, were tested for norovirus genogroups I and II by using a quantitative real-time reverse transcription (RT)-PCR method. Norovirus was detected in 76.2% (643/844) of samples, with all sites returning at least one positive result. Both prevalences (presence or absence) and norovirus levels varied markedly between sites. However, overall, a marked winter seasonality of contamination by both prevalence and quantity was observed. Correlations were found between norovirus contamination and potential risk indicators, including harvesting area classifications, Escherichia coli scores, and environmental temperatures. A predictive risk score for norovirus contamination was developed by using a combination of these factors. In summary, this study, the largest of its type undertaken to date, provides a systematic analysis of norovirus contamination in commercial oyster production areas in the United Kingdom. The data should assist risk managers to develop control strategies to reduce the risk of human illness resulting from norovirus contamination of bivalve molluscs.T he contamination of bivalve shellfish with norovirus from human fecal sources is recognized as a major human health risk (21). Risk assessment and management currently rely on the use of Escherichia coli as an indicator of fecal (sewage) contamination in shellfish (3). However, this approach has been repeatedly demonstrated to inadequately indicate the risk from human enteric viruses (2,8,16). Over the last decade, considerable progress has been made toward the development of sensitive quantitative detection methods for norovirus in molluscan shellfish, and there are numerous reports describing various approaches to virus testing (19,24,25). All available methods are based on the detection of virus genomes by using molecular techniques (PCR), as the successful cultivation of norovirus by conventional virological techniques has been reported only rarely (33, 34) and is not currently feasible for application to foodstuffs. At present, no internationally accepted reference method exists; however, the European Committee on Normalization (CEN) has an active working group addressing the development of an ISO standard method for the detection of norovirus and hepatitis A virus (HAV) in foodstuffs, including bivalve shellfish (22). The method is scheduled for publication in 2012, and publication will be followed by an internatio...
Knowledge of the fate of human noroviruses (NoV) in the marine environment is key to better controlling shellfish-related NoV gastroenteritis. We quantified NoV and Escherichia coli in sewage from storm tank discharges and treated effluent processed by a UV-disinfection plant following activated sludge treatment and studied the fate of these microorganisms in an oyster harvesting area impacted by frequent stormwater discharges and infrequent freshwater discharges. Oyster monitoring sites were positioned at intervals downstream from the wastewater treatment works (WwTW) outfall impacting the harvesting area. The decay rates of NoV in oysters as a function of the distance from the outfall were less rapid than those for E. coli that had concentrations of NoV of the same order of magnitude and were over 7 km away from the outfall. Levels of E. coli in oysters from more tidally influenced areas of the estuary were higher around high water than around low water, whereas tidal flows had no influence on NoV contamination in the oysters. The study provides comparative data on the contamination profiles and loadings of NoV and E. coli in a commercial oyster fishery impacted by a WwTW.
Contamination of bivalve shellfish, particularly oysters, with norovirus is recognised as a food safety risk and a potential contributor to the overall burden of gastroenteritis in the community. The United Kingdom (UK) has comprehensive national baseline data on the prevalence, levels, and seasonality of norovirus in oysters in production areas resulting from a previous two-year study (2009–2011). However, previously, data on final product as sold to the consumer have been lacking. As part of a wider project to establish the overall burden of foodborne norovirus in the UK, this study aimed to address this data gap. A one-year survey of oysters collected from the point-of-sale to the consumer was carried out from March 2015 to March 2016. A total of 630 samples, originating in five different European Union Member States, were collected from 21 regions across the UK using a randomised sampling plan, and tested for norovirus using a method compliant with ISO 15216-1, in addition to Escherichia coli as the statutory indicator of hygiene status. As in the previous production area study, norovirus RNA was detected in a high proportion of samples (68.7%), with a strong winter seasonality noted. Some statistically significant differences in prevalences and levels in oysters from different countries were noted, with samples originating in the Netherlands showing lower prevalences and levels than those from either the UK or Ireland. Overall, levels detected in positive samples were considerably lower than seen previously. Investigation of potential contributing factors to this pattern of results was carried out. Application of normalisation factors to the data from the two studies based on both the numbers of norovirus illness reports received by national surveillance systems, and the national average environmental temperatures during the two study periods resulted in a much closer agreement between the two data sets, with the notably different numbers of illness reports making the major contribution to the differences observed in norovirus levels in oysters. The large majority of samples (76.5%) contained no detectable E. coli; however, in a small number of samples (2.4%) levels above the statutory end product standard (230 MPN/100 g) were detected. This study both revealed the high prevalence of norovirus RNA in oysters directly available to the UK consumer, despite the high level of compliance with the existing E. coli-based health standards, while also highlighting the difficulty in comparing the results of surveys carried out in different time periods, due to variability in risk factors.Electronic supplementary materialThe online version of this article (10.1007/s12560-018-9338-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.