Staphylococcus aureus is capable of infecting nearly every organ in the human body. In order to infiltrate and thrive in such diverse host tissues, staphylococci must possess remarkable flexibility in both metabolic and virulence programs. To investigate the genetic requirements for bacterial survival during invasive infection, we performed a transposon sequencing (TnSeq) analysis of S. aureus during experimental osteomyelitis. TnSeq identified 65 genes essential for staphylococcal survival in infected bone and an additional 148 mutants with compromised fitness in vivo. Among the loci essential for in vivo survival was SrrAB, a staphylococcal two-component system previously reported to coordinate hypoxic and nitrosative stress responses in vitro. Healthy bone is intrinsically hypoxic, and intravital oxygen monitoring revealed further decreases in skeletal oxygen concentrations upon S. aureus infection. The fitness of an srrAB mutant during osteomyelitis was significantly increased by depletion of neutrophils, suggesting that neutrophils impose hypoxic and/or nitrosative stresses on invading bacteria. To more globally evaluate staphylococcal responses to changing oxygenation, we examined quorum sensing and virulence factor production in staphylococci grown under aerobic or hypoxic conditions. Hypoxic growth resulted in a profound increase in quorum sensing-dependent toxin production, and a concomitant increase in cytotoxicity toward mammalian cells. Moreover, aerobic growth limited quorum sensing and cytotoxicity in an SrrAB-dependent manner, suggesting a mechanism by which S. aureus modulates quorum sensing and toxin production in response to environmental oxygenation. Collectively, our results demonstrate that bacterial hypoxic responses are key determinants of the staphylococcal-host interaction.
The issue of whether viruses are subject to restriction by endogenous microRNAs (miRNAs) and/or by virus-induced small interfering RNAs (siRNAs) in infected human somatic cells has been controversial. Here, we address this question in two ways. First, using deep sequencing, we demonstrate that infection of human cells by the RNA virus dengue virus (DENV) or West Nile virus (WNV) does not result in the production of any virus-derived siRNAs or viral miRNAs. Second, to more globally assess the potential of small regulatory RNAs to inhibit virus replication, we used gene editing to derive human cell lines that lack a functional Dicer enzyme and that therefore are unable to produce miRNAs or siRNAs. Infection of these cells with a wide range of viruses, including DENV, WNV, yellow fever virus, Sindbis virus, Venezuelan equine encephalitis virus, measles virus, influenza A virus, reovirus, vesicular stomatitis virus, human immunodeficiency virus type 1, or herpes simplex virus 1 (HSV-1), failed to reveal any enhancement in the replication of any of these viruses, although HSV-1, which encodes at least eight Dicer-dependent viral miRNAs, did replicate somewhat more slowly in the absence of Dicer. We conclude that most, and perhaps all, human viruses have evolved to be resistant to inhibition by endogenous human miRNAs during productive replication and that dependence on a cellular miRNA, as seen with hepatitis C virus, is rare. How viruses have evolved to avoid inhibition by endogenous cellular miRNAs, which are generally highly conserved during metazoan evolution, remains to be determined. IMPORTANCEEukaryotic cells express a wide range of small regulatory RNAs, including miRNAs, that have the potential to inhibit the expression of mRNAs that show sequence complementarity. Indeed, previous work has suggested that endogenous miRNAs have the potential to inhibit viral gene expression and replication. Here, we demonstrate that the replication of a wide range of pathogenic viruses is not enhanced in human cells engineered to be unable to produce miRNAs, indicating that viruses have evolved to be resistant to inhibition by miRNAs. This result is important, as it implies that manipulation of miRNA levels is not likely to prove useful in inhibiting virus replication. It also focuses attention on the question of how viruses have evolved to resist inhibition by miRNAs and whether virus mutants that have lost this resistance might prove useful, for example, in the development of attenuated virus vaccines.T wo forms of small-RNA-mediated RNA interference (RNAi) in somatic eukaryotic cells have been described. One form of RNAi, mediated by small interfering RNAs (siRNAs), was initially discovered in nematodes (1) and involves the sequential exonucleolytic processing of long, perfect, double-stranded RNAs (dsRNAs) by the RNase III enzyme Dicer to yield ϳ22-bp siRNA duplexes, one strand of which is then incorporated into the RNA-induced silencing complex (RISC) (2, 3). The siRNA guides RISC to RNA molecules that generally ...
causes a wide range of diseases that together embody a significant public health burden. Aided by metabolic flexibility and a large virulence repertoire, has the remarkable ability to hematogenously disseminate and infect various tissues, including skin, lung, heart, and bone, among others. The hallmark lesions of invasive staphylococcal infections, abscesses, simultaneously denote the powerful innate immune responses to tissue invasion as well as the ability of staphylococci to persist within these lesions. In this article, we review the innate immune responses to during infection of skin and bone, which serve as paradigms for soft tissue and bone disease, respectively.
Staphylococcus aureus is able to infect virtually all organ systems and is a frequently isolated etiologic agent of osteomyelitis, a common and debilitating invasive infection of bone. Treatment of osteomyelitis requires invasive surgical procedures and prolonged antibiotic therapy, yet is frequently unsuccessful due to extensive pathogen-induced bone damage that can limit antibiotic penetration and immune cell influx to the infectious focus. We previously established that S . aureus triggers profound alterations in bone remodeling in a murine model of osteomyelitis, in part through the production of osteolytic toxins. However, staphylococcal strains lacking osteolytic toxins still incite significant bone destruction, suggesting that host immune responses are also major drivers of pathologic bone remodeling during osteomyelitis. The objective of this study was to identify host immune pathways that contribute to antibacterial immunity during S . aureus osteomyelitis, and to define how these immune responses alter bone homeostasis and contribute to bone destruction. We specifically focused on the interleukin-1 receptor (IL-1R) and downstream adapter protein MyD88 given the prominent role of this signaling pathway in both antibacterial immunity and osteo-immunologic crosstalk. We discovered that while IL-1R signaling is necessary for local control of bacterial replication during osteomyelitis, it also contributes to bone loss during infection. Mechanistically, we demonstrate that S . aureus enhances osteoclastogenesis of myeloid precursors in vitro , and increases the abundance of osteoclasts residing on bone surfaces in vivo . This enhanced osteoclast abundance translates to trabecular bone loss, and is dependent on intact IL-1R signaling. Collectively, these data define IL-1R signaling as a critical component of the host response to S . aureus osteomyelitis, but also demonstrate that IL-1R-dependent immune responses trigger collateral bone damage through activation of osteoclast-mediated bone resorption.
The ability to target discrete features within tissue using liquid surface extractions enables the identification of proteins while maintaining the spatial integrity of the sample. Here, we present a *
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.