It has been proposed that two amino acid substitutions in the transcription factor FOXP2 have been positively selected during human evolution due to effects on aspects of speech and language. Here, we introduce these substitutions into the endogenous Foxp2 gene of mice. Although these mice are generally healthy, they have qualitatively different ultrasonic vocalizations, decreased exploratory behavior and decreased dopamine concentrations in the brain suggesting that the humanized Foxp2 allele affects basal ganglia. In the striatum, a part of the basal ganglia affected in humans with a speech deficit due to a nonfunctional FOXP2 allele, we find that medium spiny neurons have increased dendrite lengths and increased synaptic plasticity. Since mice carrying one nonfunctional Foxp2 allele show opposite effects, this suggests that alterations in cortico-basal ganglia circuits might have been important for the evolution of speech and language in humans.
OBJECTIVETo determine whether short-time, real-time continuous glucose monitoring (RT-CGM) has long-term salutary glycemic effects in patients with type 2 diabetes who are not on prandial insulin.RESEARCH DESIGN AND METHODSThis was a randomized controlled trial of 100 adults with type 2 diabetes who were not on prandial insulin. This study compared the effects of 12 weeks of intermittent RT-CGM with self-monitoring of blood glucose (SMBG) on glycemic control over a 40-week follow-up period. Subjects received diabetes care from their regular provider without therapeutic intervention from the study team.RESULTSThere was a significant difference in A1C at the end of the 3-month active intervention that was sustained during the follow-up period. The mean, unadjusted A1C decreased by 1.0, 1.2, 0.8, and 0.8% in the RT-CGM group vs. 0.5, 0.5, 0.5, and 0.2% in the SMBG group at 12, 24, 38, and 52 weeks, respectively (P = 0.04). There was a significantly greater decline in A1C over the course of the study for the RT-CGM group than for the SMBG group, after adjusting for covariates (P < 0.0001). The subjects who used RT-CGM per protocol (≥48 days) improved the most (P < 0.0001). The improvement in the RT-CGM group occurred without a greater intensification of medication compared with those in the SMBG group.CONCLUSIONSSubjects with type 2 diabetes not on prandial insulin who used RT-CGM intermittently for 12 weeks significantly improved glycemic control at 12 weeks and sustained the improvement without RT-CGM during the 40-week follow-up period, compared with those who used only SMBG.
Background: Real-time continuous glucose monitoring (RT-CGM) improves hemoglobin A1c (A1C) and hypoglycemia in people with type 1 diabetes mellitus and those with type 2 diabetes mellitus (T2DM) on prandial insulin; however, it has not been tested in people with T2DM not taking prandial insulin. We evaluated the utility of RT-CGM in people with T2DM on a variety of treatment modalities except prandial insulin. Methods: We conducted a prospective, 52-week, two-arm, randomized trial comparing RT-CGM ( n = 50) versus self-monitoring of blood glucose (SMBG) ( n = 50) in people with T2DM not taking prandial insulin. Real-time continuous glucose monitoring was used for four 2-week cycles (2 weeks on/1 week off). All patients were managed by their usual provider. This article reports on changes in A1C 0–12 weeks. Results: Mean (±standard deviation) decline in A1C at 12 weeks was 1.0% (±1.1%) in the RT-CGM group and 0.5% (±0.8%) in the SMBG group ( p = .006). There were no group differences in the net change in number or dosage of hypoglycemic medications. Those who used the RT-CGM for ±48 days (per protocol) reduced their A1C by 1.2% (±1.1%) versus 0.6% (±1.1%) in those who used it <48 days ( p = .003). Multiple regression analyses statistically adjusting for baseline A1C, an indicator for usage, and known confounders confirmed the observed differences between treatment groups were robust ( p = .009). There was no improvement in weight or blood pressure. Conclusions: Real-time continuous glucose monitoring significantly improves A1C compared with SMBG in patients with T2DM not taking prandial insulin. This technology might benefit a wider population of people with diabetes than previously thought.
SUMMARY Sel1L is an essential adaptor protein for the E3 ligase Hrd1 in the endoplasmic reticulum-associated degradation (ERAD), a universal quality-control system in the cell; but its physiological role remains unclear. Here we show that mice with adipocyte-specific Sel1L deficiency are resistant to diet-induced obesity and exhibit postprandial hypertriglyceridemia. Further analyses reveal that Sel1L is indispensable for the secretion of lipoprotein lipase (LPL), independently of its role in Hrd1-mediated ERAD and ER homeostasis. Sel1L physically interacts and stabilizes the LPL maturation complex consisted of LPL and lipase-maturation factor 1 (LMF1). In the absence of Sel1L, LPL is retained in the ER and form protein aggregates, which are degraded primarily by autophagy. The Sel1L-mediated control of LPL secretion is also seen in other LPL-expressing cell types including cardiac myocytes and macrophages. Thus, our study reports a role of Sel1L in LPL secretion and systemic lipid metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.