Pulsed electron-electron double resonance (PELDOR/DEER) experiments of nucleic acids with rigid spin labels provide highly accurate distance and orientation information. Here we combine PELDOR experiments with molecular dynamics (MD) simulations to arrive at an atomistic view of the conformational dynamics of DNA. The MD simulations closely reproduce the PELDOR time traces, and demonstrate that bending, in addition to twist-stretch motions, underpin the sub-μs dynamics of DNA. PELDOR experiments correctly rank DNA force fields and resolve subtle differences in the conformational ensembles of nucleic acids, on the order of 1-2 Å. Long-range distance and angle measurements with rigid spin labels provide critical input for the refinement of computer models and the elucidation of the structure and dynamics of complex biomolecules.
Pulsed electron paramagnetic resonance (EPR) experiments, among them most prominently pulsed electron-electron double resonance experiments (PELDOR/DEER), resolve the conformational dynamics of nucleic acids with high resolution. The wide application of these powerful experiments is limited by the synthetic complexity of some of the best-performing spin labels. The recently developed $\bf\acute{G}$ (G-spin) label, an isoindoline-nitroxide derivative of guanine, can be incorporated non-covalently into DNA and RNA duplexes via Watson-Crick base pairing in an abasic site. We used PELDOR and molecular dynamics (MD) simulations to characterize $\bf\acute{G}$, obtaining excellent agreement between experiments and time traces calculated from MD simulations of RNA and DNA double helices with explicitly modeled $\bf\acute{G}$ bound in two abasic sites. The MD simulations reveal stable hydrogen bonds between the spin labels and the paired cytosines. The abasic sites do not significantly perturb the helical structure. $\bf\acute{G}$ remains rigidly bound to helical RNA and DNA. The distance distributions between the two bound $\bf\acute{G}$ labels are not substantially broadened by spin-label motions in the abasic site and agree well between experiment and MD. $\bf\acute{G}$ and similar non-covalently attached spin labels promise high-quality distance and orientation information, also of complexes of nucleic acids and proteins.
The investigation of the structure and conformational dynamics of biomolecules under physiological conditions is challenging for structural biology. Although pulsed electron paramagnetic resonance (like PELDOR) techniques provide long-range distance and orientation information with high accuracy, such studies are usually performed at cryogenic temperatures. At room temperature (RT) PELDOR studies are seemingly impossible due to short electronic relaxation times and loss of dipolar interactions through rotational averaging. We incorporated the rigid nitroxide spin label Ç into a DNA duplex and immobilized the sample on a solid support to overcome this limitation. This enabled orientation-selective PELDOR measurements at RT. A comparison with data recorded at 50 K revealed averaging of internal dynamics, which occur on the ns time range at RT. Thus, our approach adds a new method to study structural and dynamical processes at physiological temperature in the <10 μs time range with atomistic resolution.
Pulsed electron electron double resonance experiments with rigid spin labels can reveal very detailed information about the structure and conformational flexibility of nucleic acid molecules. On the other hand, the analysis of such data is more involved the distance and orientation information encoded in the time domain data need to be extracted and separated. In this respect studies with different spin labels with variable internal mobility are interesting and can help to unambiguously interpret the EPR data. Here orientation selective multi-frequency/multi-field 4-pulse PELDOR/DEER experiments with three recently presented semi-rigid or conformationally unambiguous isoindoline-derived spin labels were performed and simulated quantitatively by taking the spin label dynamics into account. PELDOR measurements were performed for a 20-mer dsDNA with two spin labels attached to two defined uridine derivatives. Measurements were recorded for different spin label positions within the double helical strand and for different magnetic field strengths. The experimental data sets were compared with simulations, taking into account the previously described dsDNA dynamics and the internal motions of the spin label itself, which had shown distinct differences between the three spin labels used. The (ExIm)U spin label shows a free rotation around a single bond, which averages out orientation effects, without influencing the distance distribution as it can occur in other spin labels. The (Im)U and (Ox)U spin label, on the other hand, show distinct orientation behaviour with minimal intrinsic motion. We could quantitatively determine this internal motion and demonstrate that the conformational dynamics of the nucleic acid and the spin label can be well separated by this approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.