The long-term changes in tyrosine hydroxylase (TH) activity induced by chronic exposure to cold in brain noradrenergic neurons of the locus coeruleus (LC) were analyzed and compared to those measured in a peripheral tissue such as adrenals. This analysis was made possible at the level of one single tissue corresponding to one animal by the use of sensitive methods that allow assay of TH activity, protein, and mRNA levels in parallel from the same homogenate. The three parameters were measured in brain structures and adrenals of rats maintained at 4 degrees C during 4 days and were compared to those of control animals kept at normal housing temperature (22 degrees C). LC of rats exposed to cold contained 200% more TH mRNA than controls. The amount of TH protein in this area rose to as much as 164% that of controls. Similarly, the activity of the enzyme increased to 140% of the normal value. Thus, these observations show that 1) the increase in TH mRNA was much higher than the increase in protein levels, and that 2) the newly synthesized molecules have about the same activity as that present under normal conditions. In contrast to the LC, no variation of these parameters was observed in the substantia nigra. In the adrenals, the variations in the different parameters were qualitatively similar to that observed in the LC, although they were quantitatively higher: TH mRNA, TH protein, and TH activity levels were respectively 330%, 182%, and 167% that of control adrenals. Altogether, these results demonstrate that exposure to cold induces an alteration in TH synthesis in brain noradrenergic neurons as well as in adrenals.
Activity-dependent regulation of Egr1/Zif268, a transcription factor (TF) of the Egr family, is essential for stabilization of dentate gyrus synaptic plasticity and consolidation and reconsolidation of several forms of memory. The gene can be rapidly induced in selective brain circuits after certain types of learning or after recall. Here, we focused on area CA1 and examined regulation of Egr1, Egr2, and Egr3 mRNA and protein, and their DNA binding activity to the Egr response element (ERE) at different times after LTP in vivo and after learning and recall of a fear memory. We found LTP in CA1 leads to rapid induction of the three Egrs, however only Egr1 protein was overexpressed without a co-ordinated change in binding activity, indicating a fundamental difference between CA1 and dentate gyrus LTP. Our investigations in fear memory reveal that both learning and retrieval lead to an increase in binding of constitutively expressed Egr1 and Egr3 to the ERE, but not Egr2. Memory recall was also associated with increased Egr1 protein translation. The nature and temporal dynamics of these changes and tests for interactions between TFs suggest that in addition to ERE-mediated transcription, Egr1 in CA1 may interact with the TF c-Fos to regulate genes via other DNA response elements.
The identification of the factors that allow better monitoring of stem cell renewal and differentiation is of paramount importance for the implementation of new regenerative therapies, especially with regard to the nervous and hematopoietic systems. In this article, we present new information on the function of zinc finger protein 191
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.