Acute normobaric hypoxia may induce pulmonary injury with edema (PE) and inflammation. Hypoxia is accompanied by sympathetic activation. As both acute hypoxia and high plasma catecholamine levels may elicit PE, we had originally expected that adrenergic blockade may attenuate the severity of hypoxic pulmonary injury. In particular, we investigated whether administration of drugs with reduced fluid load would be beneficial with respect to both cardiocirculatory and pulmonary functions in acute hypoxia. Rats were exposed to normobaric hypoxia (10% O2) over 1.5 or 6 h and received 0.9% NaCl or adrenergic blockers either as infusion (1 ml/h, increased fluid load) or injection (0.5 ml, reduced fluid load). Control animals were kept in normoxia and received infusions or injections of 0.9% NaCl. After 6 h of hypoxia, LV inotropic function was maintained with NaCl injection but decreased significantly with NaCl infusion. Adrenergic blockade induced a similar LV depression when fluid load was low, but did not further deteriorate LV depression after 6 h of infusion. Reduced fluid load also attenuated pulmonary injury after 6 h of hypoxia. This might be due to an effective fluid drainage into the pleural space. Adrenergic blockade could not prevent PE. In general, increased fluid load and impaired LV inotropic function promote the development of PE in acute hypoxia. The main physiologic conclusion from this study is that fluid reduction under hypoxic conditions has a protective effect on cardiopulmonary function. Consequently, appropriate fluid management has particular importance to subjects in hypoxic conditions.
Heterocyst-forming cyanobacteria are able to perform oxygenic photosynthesis and nitrogen fixation simultaneously in the same filament, by restricting the highly O 2 -sensitive nitrogenase to specialized cells, the heterocysts. A remarkable change in morphology and metabolism accompanies the differentiation of heterocysts, which only occurs when no source of combined nitrogen is available. In this study, we characterized DevT (Alr4674), a putative protein phosphatase from Anabaena PCC 7120. Mutants defective in devT are able to form morphologically mature heterocysts, which however cannot fix N 2 , and the mutant cannot survive without a source of combined nitrogen. DevT shows homology to phosphatases of the PPP family and displays a Mn 2+ -dependent phosphatase activity that can be inhibited by phosphatase inhibitors and oxidizing conditions. DevT is constitutively expressed in both vegetative cells and heterocysts, and is not regulated by NtcA. The heterocyst regulator HetR may exert a certain inhibition on the expression of devT. Under diazotrophic growth conditions, DevT protein accumulates specifically in mature heterocysts. Therefore DevT plays a still unknown role in a late essential step of heterocyst differentiation.
Heterologous gene transfer by viral vector systems is often limited by factors such as preexisting immunity, toxicity, low packaging capacity, or weak immunogenic potential. A novel viral vector system derived from equine herpesvirus type 1 (EHV-1) not only overcomes some of these obstacles but also promotes the robust expression of a delivered transgene and the induction of antigen-specific immune responses. Regarding an enhanced safety profile, we assessed the impact of the gene encoding the sole essential tegument protein, ETIF, on the replication and immunogenicity of recombinant EHVs. The deletion of ETIF severely attenuates replication in permissive RK13 cells and a human lung epithelial cell line but without influencing transgene expression. Whereas the intranasal administration of a recombinant luciferase EHV in BALB/c mice resulted in transgene expression in nasal cavities and lungs for 5 to 6 days, the ETIF deletion limited expression to 2 days and resulted in 30-fold-less luminescence. Attenuated replication was accompanied by a decreased capacity to induce CD8 ؉ T cells against a delivered HIV Gag transgene in BALB/c mice following repeated intranasal application. However, a single subcutaneous immunization with a gag DNA vaccine primed specific T cells for substantial expansion by two subsequent intranasal booster immunizations with either the gag recombinant ETIF mutant or the parental virus. In addition to inducing Gag-specific serum antibodies, this prime-boost strategy clearly outperformed three sequential immunizations with the parental or EHV-⌬ETIF virus or repeated DNA vaccination by inducing substantial specific secretory IgA (sIgA) titers.
No abstract
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.