Background:Historically, tendon-to-bone fixation has relied on knot tying. However, considerable variability exists in knot-tying strength among surgeons.Purpose/Hypothesis:The purpose of this study was to compare the biomechanical properties of knotted and knotless fixation and to evaluate variability among surgeons. The hypothesis was that knotless constructs would be stronger and have less variability as compared with knotted constructs.Study Design:Controlled laboratory study.Methods:A total of 34 orthopaedic surgeons participated in a laboratory study to compare knotted and knotless constructs, where 104 knotted constructs were performed with No. 2 suture, 21 knotless constructs with No. 2 suture (K2 group), and 79 knotless constructs with suture tape (KT group). Mechanical testing was performed to compare load at 3 mm of displacement, load to failure, and stiffness of each construct.Results:The mean load at 3 mm of displacement was greatest in the KT group, with significant differences among all 3 groups (P < .001). Load to failure was significantly greater in the KT group as compared with the K2 group and the knotted group (P < .001), but there was no difference between the K2 and knotted groups (P ≥ .999). Stiffness and displacement were also greatest in the KT group. Based on the F test, the variance in load to failure was significantly different between the knotted and knotless constructs, with the knotted group demonstrating greater variability (SD, 94 N) than the KT (SD, 38 N) and K2 (SD, 17 N) groups (P < .001).Conclusion:Knotless fixation with suture tape had improved biomechanical performance as compared with knots or knotless fixation with No. 2 suture. In addition, knotless fixation had less variability in biomechanical properties among multiple surgeons.Clinical Relevance:This study may be relevant for surgeons choosing between knotted and knotless constructs as well as for considerations in the design of rotator cuff repair constructs.
Background: The biomechanical properties of coracoid fixation with a miniplate during the Latarjet procedure have not been described. Purpose: To determine the biomechanical properties of miniplate fixation for the Latarjet procedure compared with various screw fixation configurations. Study Design: Controlled laboratory study. Methods: A total of 8 groups (n = 5 specimens per group) were tested at a screw insertion angle of 0°: (1) 3.75-mm single screw, (2) 3.75-mm double screw, (3) 3.75-mm double screw with washers, (4) 3.75-mm double screw with a miniplate, (5) 4.00-mm single screw, (6) 4.00-mm double screw, (7) 4.00-mm double screw with washers, and (8) 4.00-mm double screw with a miniplate. In addition, similar to groups 1 to 3 and 5 to 7, there were 30 additional specimens (n = 5 per group) tested at a screw insertion angle of 15° (groups 9-14). To maintain specimen uniformity, rigid polyurethane foam blocks were used. Testing parameters included a preload of 214 N for 10 seconds, cyclical loading from 184 to 736 N at 1 Hz for 100 cycles, and failure loading at a rate of 15 mm/min until 10 mm of displacement or specimen failure occurred. Results: All single-screw constructs and 77% of 15° screw constructs failed before the completion of cyclical loading. Across all groups, group 8 (4.00-mm double screw with miniplate) demonstrated the highest maximum failure load ( P < .001). There were no differences in failure loads among specimens with single-screw fixation (groups 1, 5, 9, and 12; P > .05). All specimens in groups 9, 10, 11, 12, 13, and 14 (insertion angle of 15°) had significantly lower maximum failure loads compared with specimens in groups 2, 3, 4, 6, 7, and 8 (insertion angle of 0°) ( P < .001 for all). Conclusion: These results indicate significantly superior failure loads with the miniplate compared with all other constructs. Across all fixation techniques and screw sizes, constructs with screws inserted at 0° performed better than constructs with screws inserted at 15°. Clinical Relevance: The use of a miniplate for coracoid fixation during the Latarjet procedure may provide a more durable construct for the high-demand contact athlete.
Background: Despite the rare entity of sternoclavicular joint (SCJ) instability, a variety of different reconstruction techniques for SCJ dislocations have been described. A technique with oblique drilling has been proposed to reduce intraoperative risks. Purpose: To biomechanically investigate different cerclage reconstruction techniques and the benefit of additional reinforcement using suture tape. Study Design: Controlled laboratory study. Methods: Reconstructed artificial bone specimens were mounted on a mechanical testing machine. They were subjected to anterior and posterior translation, analyzing ultimate strength, displacement, stiffness, and elongation. For stage 1, different angulations of the drill tunnels through the sternum and clavicle were compared. Straight drill tunnels from anterior to posterior were compared with 45° oblique drill tunnels. For stage 2, three different materials for cerclage reconstruction were compared: (1) suture tape alone (FT group), (2) tendon graft alone (tendon group), and (3) tendon graft with suture tape augmentation (tendon+FT group). Results: For the FT group, in the anterior and posterior directions, straight drill holes resulted in a significantly higher load to failure (936.9 ± 122.5 N) compared with oblique ones (434.5 ± 20.2 N) ( P < .0001). During cyclic testing, all specimens with straight drill holes survived the 5- to 550-N step, while all specimens with oblique ones failed during the 5- to 450-N step. Analyzing the graft material choice, the mean load to failure was 556.6 ± 174.3 N for the tendon group, 936.9 ± 122.5 N for the FT group, and 767.0 ± 110.7 N for the tendon+FT group ( P = .089). The stiffness of the tendon+FT group was significantly lower than that of the FT group and significantly higher than that of the tendon group. Conclusion: Oblique tunnel placement during SCJ reconstruction, while reducing the intraoperative risk, results in decreased primary stability of the construct. Tendon graft reconstruction with suture tape augmentation leads to enhanced stability and optimizes biomechanical properties of the construct. Clinical Relevance: The surgical technique with straight drill holes has superior initial biomechanical properties and may likewise produce superior clinical outcomes in the treatment of SCJ instability. Suture tape augmentation can provide additional stability to reconstruction procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.