The human leukocyte antigen G1 (HLA-G1), a non-classical class I major histocompatibility complex (MHC-I) protein, is a potent immunomodulatory molecule at the maternal/fetal interface and other environments to regulate the cellular immune response. We created GGTA1-/HLAG1+ pigs to explore their use as organ and cell donors that may extend xenograft survival and function in both preclinical nonhuman primate (NHP) models and future clinical trials. In the present study, HLA-G1 was expressed from the porcine ROSA26 locus by homology directed repair (HDR) mediated knock-in (KI) with simultaneous deletion of α-1-3-galactotransferase gene (GGTA1; GTKO) using the clustered regularly interspersed palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) (CRISPR/Cas9) gene-editing system. GTKO/HLAG1+ pigs showing immune inhibitory functions were generated through somatic cell nuclear transfer (SCNT). The presence of HLA-G1 at the ROSA26 locus and the deletion of GGTA1 were confirmed by next generation sequencing (NGS) and Sanger’s sequencing. Fibroblasts from piglets, biopsies from transplantable organs, and islets were positive for HLA-G1 expression by confocal microscopy, flow cytometry, or q-PCR. The expression of cell surface HLA-G1 molecule associated with endogenous β2-microglobulin (β2m) was confirmed by staining genetically engineered cells with fluorescently labeled recombinant ILT2 protein. Fibroblasts obtained from GTKO/HLAG1+ pigs were shown to modulate the immune response by lowering IFN-γ production by T cells and proliferation of CD4+ and CD8+ T cells, B cells and natural killer (NK) cells, as well as by augmenting phosphorylation of Src homology region 2 domain-containing phosphatase-2 (SHP-2), which plays a central role in immune suppression. Islets isolated from GTKO/HLA-G1+ genetically engineered pigs and transplanted into streptozotocin-diabetic nude mice restored normoglycemia, suggesting that the expression of HLA-G1 did not interfere with their ability to reverse diabetes. The findings presented here suggest that the HLA-G1+ transgene can be stably expressed from the ROSA26 locus of non-fetal maternal tissue at the cell surface. By providing an immunomodulatory signal, expression of HLA-G1+ may extend survival of porcine pancreatic islet and organ xenografts.
Pigs are especially useful large animal models, however, limited availability of commercially available antibodies for immunoblotting presents a significant obstacle facing preclinical xenotransplantation research. Major histocompatibility complex class I (MHC‐I) molecule expression enhancement by nucleotide‐binding oligomerization domain (NOD)‐like receptor family with a caspase recruitment domain (CARD) containing caspase 5 (NLRC5) is fundamental to understanding porcine xenoantigen presentation. Swine Leukocyte Antigens (SLAs) are the porcine MHC homologs for human leukocyte antigens. SLA‐I is a known xenoantigen that causes T cell activation. NLRC5, SLA‐I, and B2M are all targets of immune modulation in genetically engineered pigs in xenotransplantation research with the goal to reduce SLA‐I expression. In the present study, the human anti‐NLRC5 (ab105411), anti‐NLRC5 (ab117624), anti‐NLRC5 N‐terminal (ab178767), anti‐HLA E (ab203082), anti‐HLA E (ab135826), anti‐HLA E (ab2216) and anti‐β2M (ab75853) antibodies were examined using immunoblots for porcine cross‐reactivity. The anti‐human antibodies ab117624, ab105411, ab178767, ab2216, and ab75853 cross reacted with cognate proteins in porcine cell lysates. Antibody reagents from this study will allow for validation of NLRC5, B2M, MHC‐I expression in future research studies. In addition, following the methodology described in this study for other xenotransplantation targets may provide an alternative to custom antibody development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.