This study constitutes the first report for multiple polyploidy in olive tree relatives. Formation of tetraploids and hexaploids may have played a major role in the diversification of the olive complex in north-west Africa. The fact that polyploidy is found in narrow endemic subspecies from Madeira (subsp. cerasiformis) and the Agadir Mountains (subsp. maroccana) suggests that polyploidization has been favoured to overcome inbreeding depression. Lastly, based on previous phylogenetic analyses, we hypothesize that subsp. cerasiformis resulted from hybridization between ancestors of subspp. guanchica and europaea.
The results suggest that, under restricted gene flow among families, the species may not only have rapidly purged deleterious alleles, but also have undergone some form of selection for inbreeding due to co-adaptation between loci.
Summary
Thlaspi caerulescens (Brassicaceae) is a promising plant model with which to study heavy metal hyperaccumulation. Population genetics studies are necessary for a better understanding of its history, which will be useful for further genomic studies on the evolution of heavy metal hyperaccumulation.
The genetic structure of 24 natural Swiss locations was investigated using nuclear and plastid loci. Population genetics parameters were estimated and genetic pools were identified using Bayesian inference on eight putatively neutral nuclear loci. Finally, the effect of cadmium (Cd) and zinc (Zn) soil concentrations on genetic differentiation at loci located in genes putatively involved in heavy metal responses was examined using partial Mantel tests in Jura, western Switzerland.
Four main genetic clusters were recognized based on nuclear and plastid loci, which gave mostly congruent signals. In Jura, genetic differentiation linked to heavy metal concentrations in soil was shown at some candidate loci, particularly for genes encoding metal transporters. This suggests that natural selection limits gene flow between metalliferous and nonmetalliferous locations at such loci.
Strong historical factors explain the present genetic structure of Swiss T. caerulescens populations, which has to be considered in studies testing for relationships between environmental and genetic variations. Linking of genetic differentiation at candidate genes with soil characteristics offers new perspectives in the study of heavy metal hyperaccumulation.
During the last decade, the metal hyperaccumulating plants have attracted considerable attention because of their potential use in decontamination of heavy metal contaminated soils. However, in most species, little is known regarding the function, the ecological and the evolutionary significances of hyperaccumulation. In our study, we investigated the parameters influencing the Cd concentration in plants as well as the biological implications of Cd hyperaccumulation in nine natural populations of Thlaspi caerulescens. First, we showed that Cd concentration in the plant was positively correlated with plant Zn, Fe, and Cu concentrations. This suggested that the physiological and/or molecular mechanisms for uptake, transport and/or accumulation of these four heavy metals interact with each other. Second, we specified a measure of Cd hyperaccumulation capacity by populations and showed that T. caerulescens plants originating from populations with high Cd hyperaccumulation capacity had better growth, by developing more and bigger leaves, taller stems, and produced more fruits and heavier seeds. These results suggest a tolerance/disposal role of Cd hyperaccumulation in this species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.