The purpose of the PAPI project is to specify a standard application programming interface (API) for accessing hardware performance counters available on most modern microprocessors. These counters exist as a small set of registers that count events, which are occurrences of specific signals and states related to the processor s function. Monitoring these events facilitates correlation between the structure of source/object code and the efficiency of the mapping of that code to the underlying architecture. This correlation has a variety of uses in performance analysis including hand tuning, compiler optimization, debugging, benchmarking, monitoring and performance modeling. In addition, it is hoped that this information will prove useful in the development of new compilation technology as well as in steering architectural development towards alleviating commonly occurring bottlenecks in high performance computing.
The purpose of the PAPI project is to specify a standard API for accessing hardware performance counters available on most modern microprocessors. These counters exist as a small set of registers that count "events", which are occurrences of specific signals and states related to the processor's function. Monitoring these events facilitates correlation between the structure of source/object code and the efficiency of the mapping of that code to the underlying architecture. This correlation has a variety of uses in performance analysis and tuning. The PAPI project has proposed a standard set of hardware events and a standard cross-platform library interface to the underlying counter hardware. The PAPI library has been or is in the process of being implemented on all major HPC platforms. The PAPI project is developing end-user tools for dynamically selecting and displaying hardware counter performance data. PAPI support is also being incorporated into a number of third-party tools.
Developing skills and attitudes among students in terms of Education for Sustainable Development (ESD) requires that educators address issues of sustainability in both formal and non-formal education. However, up to now, ESD seems to have been insufficiently implemented in secondary science education in many countries in general, and in high school chemistry learning in particular. A lack of suitable experiments, coupled with missing teaching and learning materials and insufficient teacher professional development have been identified as the reasons for this gap. This paper describes a project of innovation and research in the field of ESD for secondary school chemistry education. Within the project, both half-and full-day learning environments have been developed for non-formal, laboratory-based learning of secondary level students at the university. The research-based development focuses on teaching-learning modules which link formal and non-formal learning. The pedagogy employed is both learner-centered and inquiry-based. All the modules focus on sustainability issues in chemistry-related contexts. Data was collected by questionnaires from teachers and students both prior to and after the visit of the non-formal learning environment. Likert-items were analyzed statistically and the evaluation of the open-ended questions was done by Qualitative Content Analysis. An overview of the project, OPEN ACCESSSustainability 2015, 7 1799 a case from the non-formal laboratory setting, and findings from accompanying research and evaluation are discussed in this paper. Potential impacts on teacher professional development and curriculum innovation are also outlined.
This chapter describes a project of innovating chemistry education by the creation of non-formal learning environments in university laboratories open to secondary school science and chemistry classes. Issues of sustainable development and green chemistry were chosen as a driver to create the learning environments. Connecting the learning about sustainable development and green chemistry with innovations in the non-formal educational arena proofed to be a positive enrichment in the teaching and learning of chemistry in the eyes of both the students and the teachers. The project shows the potential of non-formal laboratories in universities, if thoroughly connected to formal learning in schools, for improving the chemistry curriculum and its related pedagogy, as well as for teacher continuous professional development.
This chapter discusses a project of curriculum development for the non-formal educational sector. The project aims at student learning about sustainability issues in a chemistry-related context. For this purpose, non-formal laboratory-based learning environments are developed. The learning environments center round half- or one-day visits of secondary school students in a university laboratory and are networked with the formal school syllabus in chemistry and science education respectively. All modules integrate the non-formal laboratory event about issues of sustainability with teaching materials for preparation and assessment tasks in school to fulfill part of the school curriculum in chemistry or science teaching. This chapter discusses the project of developing respective modules, the structure thereof, and initial findings from their application. The discussion is illustrated by a module on environmental problems connected to the chemistry of the atmosphere, namely climate change, the hole in the ozone layer, and the phenomenon of summer smog.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.