Previous studies showed that coculture of primary chondrocytes (PCs) with various sources of multipotent cells results in a higher relative amount of cartilage matrix formation than cultures containing only chondrocytes. The aim of this study was to investigate the mechanism underlying this observation. We used coculture pellet models of human mesenchymal stem cells (hMSCs) and human PCs or bovine PCs (bPCs) and studied the fate and the contribution to cartilage formation of the individual cell populations during coculture. Enhanced cartilage matrix deposition was confirmed by histology and quantification of total glycosaminoglycan deposition. Species-specific quantitative polymerase chain reaction demonstrated that cartilage matrix gene expression was mainly from bovine origin when bPCs were used. Short tandem repeat analysis and species-specific quantitative polymerase chain reaction analysis of genomic DNA demonstrated the near-complete loss of MSCs in coculture pellets after 4 weeks of culture. In coculture pellets of immortalized MSCs and bPCs, chondrocyte proliferation was increased, which was partly mimicked using conditioned medium, and simultaneously preferential apoptosis of immortalized MSCs was induced. Taken together, our data clearly demonstrate that in pellet cocultures of MSCs and PCs, the former cells disappear over time. Increased cartilage formation in these cocultures is mainly due to a trophic role of the MSCs in stimulating chondrocyte proliferation and matrix deposition by chondrocytes rather than MSCs actively undergoing chondrogenic differentiation.
Actively steering the chondrogenic differentiation of mesenchymal stromal cells (MSCs) into either permanent cartilage or hypertrophic cartilage destined to be replaced by bone has not yet been possible. During limb development, the developing long bone is exposed to a concentration gradient of oxygen, with lower oxygen tension in the region destined to become articular cartilage and higher oxygen tension in transient hypertrophic cartilage. Here, we prove that metabolic programming of MSCs by oxygen tension directs chondrogenesis into either permanent or transient hyaline cartilage. Human MSCs chondrogenically differentiated in vitro under hypoxia (2.5% O 2 ) produced more hyaline cartilage, which expressed typical articular cartilage biomarkers, including established inhibitors of hypertrophic differentiation. In contrast, normoxia (21% O 2 ) prevented the expression of these inhibitors and was associated with increased hypertrophic differentiation. Interestingly, gene network analysis revealed that oxygen tension resulted in metabolic programming of the MSCs directing chondrogenesis into articular-or epiphyseal cartilage-like tissue. This differentiation program resembled the embryological development of these distinct types of hyaline cartilage. Remarkably, the distinct cartilage phenotypes were preserved upon implantation in mice. Hypoxia-preconditioned implants remained cartilaginous, whereas normoxia-preconditioned implants readily underwent calcification, vascular invasion, and subsequent endochondral ossification. In conclusion, metabolic programming of MSCs by oxygen tension provides a simple yet effective mechanism by which to direct the chondrogenic differentiation program into either permanent articular-like cartilage or hypertrophic cartilage that is destined to become endochondral bone.tissue engineering | chondral defects | skeletogenesis | cell therapy | regenerative medicine
IntroductionOsteoarthritis is, at least in a subset of patients, associated with hypertrophic differentiation of articular chondrocytes. Recently, we identified the bone morphogenetic protein (BMP) and wingless-type MMTV integration site (WNT) signaling antagonists Gremlin 1 (GREM1), frizzled-related protein (FRZB) and dickkopf 1 homolog (Xenopus laevis) (DKK1) as articular cartilage’s natural brakes of hypertrophic differentiation. In this study, we investigated whether factors implicated in osteoarthritis or regulation of chondrocyte hypertrophy influence GREM1, FRZB and DKK1 expression levels.MethodsGREM1, FRZB and DKK1 mRNA levels were studied in articular cartilage from healthy preadolescents and healthy adults as well as in preserved and degrading osteoarthritic cartilage from the same osteoarthritic joint by quantitative PCR. Subsequently, we exposed human articular chondrocytes to WNT, BMP, IL-1β, Indian hedgehog, parathyroid hormone-related peptide, mechanical loading, different medium tonicities or distinct oxygen levels and investigated GREM1, FRZB and DKK1 expression levels using a time-course analysis.ResultsGREM1, FRZB and DKK1 mRNA expression were strongly decreased in osteoarthritis. Moreover, this downregulation is stronger in degrading cartilage compared with macroscopically preserved cartilage from the same osteoarthritic joint. WNT, BMP, IL-1β signaling and mechanical loading regulated GREM1, FRZB and DKK1 mRNA levels. Indian hedgehog, parathyroid hormone-related peptide and tonicity influenced the mRNA levels of at least one antagonist, while oxygen levels did not demonstrate any statistically significant effect. Interestingly, BMP and WNT signaling upregulated the expression of each other’s antagonists.ConclusionsTogether, the current study demonstrates an inverse correlation between osteoarthritis and GREM1, FRZB and DKK1 gene expression in cartilage and provides insight into the underlying transcriptional regulation. Furthermore, we show that BMP and WNT signaling are linked in a negative feedback loop, which might prove essential in articular cartilage homeostasis by balancing BMP and WNT activity.
Articular cartilage is a highly hydrated tissue with depth-dependent cellular and matrix properties that provide low-friction load bearing in joints. However, the structure and function are frequently lost and there is insufficient repair response to regenerate high-quality cartilage. Several hydrogel-based tissue-engineering strategies have recently been developed to form constructs with biomimetic zonal variations to improve cartilage repair. Modular hydrogel systems allow for systematic control over hydrogel properties, and advanced fabrication techniques allow for control over construct organization. These technologies have great potential to address many unanswered questions involved in prescribing zonal properties to tissue-engineered constructs for cartilage repair.
Nanostructured three-dimensional constructs combining layer-by-layer technology (LbL) and template leaching were processed and evaluated as possible support structures for cartilage tissue engineering. Multilayered constructs were formed by depositing the polyelectrolytes chitosan (CHT) and chondroitin sulphate (CS) on either bidimensional glass surfaces or 3D packet of paraffin spheres. 2D CHT/CS multi-layered constructs proved to support the attachment and proliferation of bovine chondrocytes (BCH). The technology was transposed to 3D level and CHT/CS multi-layered hierarchical scaffolds were retrieved after paraffin leaching. The obtained nanostructured 3D constructs had a high porosity and water uptake capacity of about 300%. Dynamical mechanical analysis (DMA) showed the viscoelastic nature of the scaffolds. Cellular tests were performed with the culture of BCH and multipotent bone marrow derived stromal cells (hMSCs) up to 21 days in chondrogenic differentiation media. Together with scanning electronic microscopy analysis, viability tests and DNA quantification, our results clearly showed that cells attached, proliferated and were metabolically active over the entire scaffold. Cartilaginous extracellular matrix (ECM) formation was further assessed and results showed that GAG secretion occurred indicating the maintenance of the chondrogenic phenotype and the chondrogenic differentiation of hMSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.