We have previously shown that basophils support humoral memory immune responses by increasing B cell proliferation and Ig production as well as inducing a Th2 and B helper phenotype in T cells. Based on the high frequency of basophils in spleen and bone marrow, in this study we investigated whether basophils also support plasma cell survival and Ig production. In the absence of basophils, plasma cells of naive or immunized mice rapidly undergo apoptosis in vitro and produce only low amounts of Igs. In contrast, in the presence of basophils and even more in the presence of activated basophils, the survival of plasma cells is markedly increased and continuous production of Igs enabled. This effect is partially dependent on IL-4 and IL-6 released from basophils. Similar results were obtained when total bone marrow cells or bone marrow cells depleted of basophils were cultured in the presence or absence of substances activating basophils. When basophils were depleted in vivo 6 mo after immunization with an Ag, specific Ig production in subsequent bone marrow cultures was significantly reduced. In addition, depletion of basophils for 18 d in naive mice significantly reduced the number of plasma cells in the spleen. These data indicate that basophils are important for survival of plasma cells in vitro and in vivo.
Little is known about the role of IL-3 in multiple sclerosis (MS) in humans and in experimental autoimmune encephalomyelitis (EAE). Using myelin oligodendrocyte glycoprotein (MOG) peptide-induced EAE, we show that CD4 T cells are the main source of IL-3 and that cerebral IL-3 expression correlates with the influx of T cells into the brain. Blockade of IL-3 with monoclonal antibodies, analysis of IL-3 deficient mice, and adoptive transfer of leukocytes demonstrate that IL-3 plays an important role for development of clinical symptoms of EAE, for migration of leukocytes into the brain, and for cerebral expression of adhesion molecules and chemokines. In contrast, injection of recombinant IL-3 exacerbates EAE symptoms and cerebral inflammation. In patients with relapsing-remitting MS (RRMS), IL-3 expression by T cells is markedly upregulated during episodes of relapse. Our data indicate that IL-3 plays an important role in EAE and may represent a new target for treatment of MS.
Objective. Activation of basophils contributes to memory immune responses and results in exacerbation of collagen-induced arthritis (CIA).
Fibrosis is a major component of chronic cardiac allograft rejection. Although several cell types are able to produce collagen, resident (donor-derived) fibroblasts are mainly responsible for excessive production of extracellular matrix proteins. It is currently unclear which cells regulate production of connective tissue elements in allograft fibrosis and how basophils, as potential producers of profibrotic cytokines, are involved this process. We studied this question in a fully MHC-mismatched model of heart transplantation with transient depletion of CD4 + T cells to largely prevent acute rejection. The model is characterized by myocardial infiltration of leukocytes and development of interstitial fibrosis and allograft vasculopathy. Using depletion of basophils, IL-4-deficient recipients and IL-4 receptor-deficient grafts, we showed that basophils and IL-4 play crucial roles in activation of fibroblasts and development of fibrotic organ remodeling. In the absence of CD4 + T cells, basophils are the predominant source of IL-4 in the graft and contribute to expansion of myofibroblasts, interstitial deposition of collagen and development of allograft vasculopathy. Our results indicated that basophils trigger the production of various connective tissue elements by myofibroblasts. Basophilderived IL-4 may be an attractive target for treatment of chronic allograft rejection.
Basophils have been recognized as important inducers of T helper type 2 (Th2) responses. Using the colitis model of adoptive transfer of CD4 þ CD62L þ T cells into lymphopenic hosts, we have analyzed how basophils regulate T-cell responses and modulate disease activity. Transferred T cells rapidly proliferate, produce large amounts of interleukin (IL)-3, and expand the number of basophils in an IL-3-dependent manner. Depletion of basophils with two different antibodies substantially upregulated Th1 cytokines in transferred T cells at day 8. Increased Th1 cytokine expression persisted until the end of the experiment when basophil-depleted mice showed exacerbation of colitis with more severe loss of weight, histological damage, colonic leukocyte infiltration, and expression of pro-inflammatory cytokines. In vitro, we show that basophil-derived IL-4 and IL-6 downregulates expression of interferon-c, IL-2, and tumor necrosis factor in T cells. These data show a beneficial role of basophils in a T-cell driven model of autoimmunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.