Objective:In this article, we review the impact of vision on older people's night driving abilities. Driving is the preferred and primary mode of transport for older people. It is a complex activity where intact vision is seminal for road safety. Night driving requires mesopic rather than scotopic vision, because there is always some light available when driving at night. Scotopic refers to night vision, photopic refers to vision under well-lit conditions, and mesopic vision is a combination of photopic and scotopic vision in low but not quite dark lighting situations. With increasing age, mesopic vision decreases and glare sensitivity increases, even in the absence of ocular diseases. Because of the increasing number of elderly drivers, more drivers are affected by night vision difficulties. Vision tests, which accurately predict night driving ability, are therefore of great interest.Methods: We reviewed existing literature on age-related influences on vision and vision tests that correlate or predict night driving ability.Results: We identified several studies that investigated the relationship between vision tests and night driving. These studies found correlations between impaired mesopic vision or increased glare sensitivity and impaired night driving, but no correlation was found among other tests; for example, useful field of view or visual field. The correlation between photopic visual acuity, the most commonly used test when assessing elderly drivers, and night driving ability has not yet been fully clarified.Conclusions: Photopic visual acuity alone is not a good predictor of night driving ability. Mesopic visual acuity and glare sensitivity seem relevant for night driving. Due to the small number of studies evaluating predictors for night driving ability, further research is needed.
In the Thematic Apperception Test, a picture story exercise (TAT/PSE; Heckhausen, 1963), it is assumed that unconscious motives can be detected in the text someone is telling about pictures shown in the test. Therefore, this text is classified by trained experts regarding evaluation rules. We tried to automate this coding and used a recurrent neuronal network (RNN) because of the sequential input data. There are two different cell types to improve recurrent neural networks regarding long-term dependencies in sequential input data: long-short-term-memory cells (LSTMs) and gated-recurrent units (GRUs). Some results indicate that GRUs can outperform LSTMs; others show the opposite. So the question remains when to use GRU or LSTM cells. The results show (N = 18000 data, 10-fold cross-validated) that the GRUs outperform LSTMs (accuracy = .85 vs. .82) for overall motive coding. Further analysis showed that GRUs have higher specificity (true negative rate) and learn better less prevalent content. LSTMs have higher sensitivity (true positive rate) and learn better high prevalent content. A closer look at a picture x category matrix reveals that LSTMs outperform GRUs only where deep context understanding is important. As these both techniques do not clearly present a major advantage over one another in the domain investigated here, an interesting topic for future work is to develop a method that combines their strengths.
Visual exploration is an omnipresent activity in everyday life, and might represent an important determinant of visual attention deficits in patients with Alzheimer’s Disease (AD). The present study aimed at investigating visual search performance in AD patients, in particular target detection in the far periphery, in daily living scenes. Eighteen AD patients and 20 healthy controls participated in the study. They were asked to freely explore a hemispherical screen, covering ±90°, and to respond to targets presented at 10°, 30°, and 50° eccentricity, while their eye movements were recorded. Compared to healthy controls, AD patients recognized less targets appearing in the center. No difference was found in target detection in the periphery. This pattern was confirmed by the fixation distribution analysis. These results show a neglect for the central part of the visual field for AD patients and provide new insights by mean of a search task involving a larger field of view.
Background:The assessment of driving-relevant cognitive functions in older drivers is a difficult challenge as there is no clear-cut dividing line between normal cognition and impaired cognition and not all cognitive functions are equally important for driving.
The aim of this study was to examine the effects of aging and target eccentricity on a visual search task comprising 30 images of everyday life projected into a hemisphere, realizing a ±90° visual field. The task performed binocularly allowed participants to freely move their eyes to scan images for an appearing target or distractor stimulus (presented at 10°; 30°, and 50° eccentricity). The distractor stimulus required no response, while the target stimulus required acknowledgment by pressing the response button. One hundred and seventeen healthy subjects (mean age = 49.63 years, SD = 17.40 years, age range 20–78 years) were studied. The results show that target detection performance decreases with age as well as with increasing eccentricity, especially for older subjects. Reaction time also increases with age and eccentricity, but in contrast to target detection, there is no interaction between age and eccentricity. Eye movement analysis showed that younger subjects exhibited a passive search strategy while older subjects exhibited an active search strategy probably as a compensation for their reduced peripheral detection performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.