Objective: The COVID-19 pandemic has led to significant public health measures that have resulted in decreased acute pediatric care utilization. We evaluated whether the rate of severe presentations of new onset type 1 diabetes (DM1), such as, diabetic ketoacidosis (DKA) has changed since the COVID-19 public health measures were enacted.Research Design and Methods: A retrospective chart review of children less than 18 years of age presenting with new onset DM1 during the pandemic period of March 17, 2020 to August 31, 2020 was conducted at two tertiary care pediatric hospitals in Alberta, Canada. Rates of DKA and severe DKA were compared to the same time period in the year 2019 (pre-pandemic control).
Results:The number of children presenting with newly diagnosed DM1 was similar during the pandemic year of 2020 compared with 2019 (107 children in 2020 vs. 114 in 2019). The frequency of DKA at DM1 onset was significantly higher in the pandemic period (68.2% vs 45.6%; p < 0.001) and incidence of severe DKA was also higher (27.1% in 2020 vs 13.2% in 2019; p = 0.01).Conclusions: There was a significant increase in DKA and severe DKA in children presenting with new onset DM1 during the COVID-19 pandemic period. This emphasizes the need for educating health care professionals and families to be aware of the symptoms of hyperglycemia and the importance of early diagnosis and treatment even during public health measures for COVID-19.
Closed-loop systems for patients with type 1 diabetes are progressing rapidly. Despite these advances, current systems may struggle in dealing with the acute stress of exercise. Algorithms to predict exercise-induced blood glucose changes in current systems are mostly derived from data involving relatively young, fit males. Little is known about the magnitude of confounding variables such as sex, age, and fitness level—underlying, uncontrollable factors that might influence blood glucose control during exercise. Sex-related differences in hormonal responses to physical exercise exist in studies involving individuals without diabetes, and result in altered fuel metabolism during exercise. Increasing age is associated with attenuated catecholamine responses and lower carbohydrate oxidation during activity. Furthermore, higher fitness levels can alter hormonal and fuel selection responses to exercise. Compounding the limited research on these factors in the metabolic response to exercise in type 1 diabetes is a limited understanding of how these variables affect blood glucose levels during different types, timing and intensities of activity in individuals with type 1 diabetes (T1D). Thus, there is currently insufficient information to model a closed-loop system that can predict them accurately and consistently prevent hypoglycemia. Further, studies involving both sexes, along with a range of ages and fitness levels, are needed to create a closed-loop system that will be more precise in regulating blood glucose during exercise in a wide variety of individuals with T1D.
Applied Physiology, Nutrition, and Metabolism D r a f t 2 Abstract Sex-related differences in metabolic and neuroendocrine response to exercise in individuals without diabetes have been well established. Men and women differ in fuel selection during exercise, in which women rely to a greater extent on fat oxidation, whereas males rely mostly on carbohydrate oxidation for energy production. The difference in fuel selection appears to be mediated by sex-related differences in hormonal (including catecholamines, growth hormone, and estrogen) response to different types and intensities of exercise. In general, men exhibit an amplified counter-regulatory response to exercise, with elevated levels of catecholamines compared to women. However, women exhibit greater sensitivity to the lipolytic action of the catecholamines and deplete less of their glycogen stores than men during exercise, which suggests that women may experience a greater defense in blood glucose control after exercise than men. Conversely, little is known about sex-related differences in response to exercise in individuals with type 1 diabetes (T1D). A single study investigating sex-related differences in response to moderate aerobic exercise in individuals with T1D found sex-related differences in catecholamine response and fuel selection, but changes in blood glucose were not measured. To our knowledge, there are no studies investigating sex-related differences in blood glucose responses to different types and intensities of exercise in individuals with T1D. This review summarizes sex-related differences in exercise responses that could potentially impact blood glucose levels during exercise in individuals with T1D and highlights the need for further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.