Mammalian TBP consists of a 180 amino acid core that is common to all eukaryotes, fused to a vertebrate-specific N-terminal domain. We generated mice having a modified tbp allele, tbp(DeltaN), that produces a version of TBP lacking 111 of the 135 vertebrate-specific amino acids. Most tbp(DeltaN/DeltaN) fetuses (>90%) died in midgestation from an apparent defect in the placenta. tbp(DeltaN/DeltaN) fetuses could be rescued by supplying them with a wild-type tetraploid placenta. Mutants also could be rescued by rearing them in immunocompromised mothers. In immune-competent mothers, survival of tbp(DeltaN/DeltaN) fetuses increased when fetal/placental beta2m expression was genetically disrupted. These results suggest that the TBP N terminus functions in transcriptional regulation of a placental beta2m-dependent process that favors maternal immunotolerance of pregnancy.
Interleukin-1beta has been demonstrated in neurons of the rat hypothalamus, including cells of the magnocellular neurosecretory system and tuberoinfundibular system (Lechan et al., [1990] Brain Res. 514:135-140). Despite its potential importance to regulation of neuroendocrine function, however, neither the specific cell types that express interleukin-1beta or the conditions that may result in its release have yet been described. Therefore, we utilized a combination of immunocytochemical and immunoelectron microscopic localization, in conjunction with Western blot analysis, on normonatremic, hypernatremic, and lactating rats to assess the site of synthesis and potential secretion characteristics of interleukin-1beta in the rat magnocellular neurosecretory system. Interleukin-1beta immunoreactivity was localized within both oxytocin and vasopressin neurons in the paraventricular, supraoptic, accessory and periventricular hypothalamic nuclei. Additionally, interleukin-1beta immunoreactive fibers were localized in the zona interna and zona externa of the median eminence and in the neurohypophysis. Immunoelectron microscopic analysis revealed that interleukin-1beta immunoreactivity is associated with small spherical structures, distinct from neurosecretory granules, in neurosecretory axons within the neurohypophysis. Furthermore, stimulation of heightened neurosecretory activity via chronic osmotic challenge and lactation resulted in a marked diminution in levels of interleukin-1beta immunoreactivity in the neurohypophysis with a subsequent return to normal levels after cessation of the stimuli. Western blot analysis confirmed the existence of interleukin-1beta protein in the neurohypophysis and provided further evidence for reduction in levels of IL-1beta immunoreactivity after stimulation of secretory activity. These results suggest an endogenous neuronal source of interleukin-1beta exists within the rat magnocellular neurosecretory system under normal physiological conditions. The potential for activity-dependent release of IL-1beta and implications for the involvement of interleukin-1beta in regulation of neurosecretory activity are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.