BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.
1. Wildfires are often followed by severe, sediment-laden floods in burned catchments. In this study, we documented resistance and resilience of stream insect communities to repeated postfire flash floods in a 'burned stream'. We employed a before-after-controlimpact (BACI) design, where communities in comparable reaches of a burned stream and a reference stream were sampled from 2 years before, to 6 years after, a crown wildfire in north-central New Mexico. 2. The first 100-year flood following the 1996 Dome wildfire reduced total insect density and taxon richness to near zero in the burned stream. Despite showing low resistance, density returned rapidly to prefire levels because of colonisation by simuliids, chironomids and the mayfly Baetis tricaudatus. In general, taxa that were generalist feeders (collectors) with strong larval dispersal dominated communities in early postfire years with repeated, moderate flash floods. 3. Taxon richness and community composition were less resilient to postfire hydrologic disturbances. Taxon richness did not recover until floods dampened 4 years after the fire. Despite hydrologic recovery, composition in the burned stream still differed from prefire and reference stream compositions after 6 years postfire. A unique assemblage, dominated by taxa with strong larval or adult dispersal, was established after flash floods abated. Specialist feeders (shredders and grazers) that were common in prefire years were reduced or absent in the postfire assemblage. 4. Community succession in the burned stream was explained by the interaction between species traits, geographic barriers to colonisation and hydrologic conditions after the fire. Comparable changes in insect density, taxon richness, community composition and trait representation were not found in the reference stream, providing strong evidence that repeated postfire flash floods shaped community responses in the burned stream.
Summary1. Evaluating the effectiveness of stream restoration is often challenging because of the lack of pre-treatment data, narrow focus on physicochemical measures and insufficient post-restoration monitoring. Even when these fundamental elements are present, quantifying restoration success is difficult because of the challenges associated with distinguishing treatment effects from seasonal variation, episodic events and long-term climatic changes. 2. We report results of one of the most comprehensive and continuous records of physical, chemical and biological data available to assess restoration success for a stream ecosystem in North America. Over a 17 year period we measured seasonal and annual changes in metal concentrations, physicochemical characteristics, macroinvertebrate communities, and brown trout Salmo trutta populations in the Arkansas River, a metal-contaminated stream in Colorado, USA. 3. Although we observed significant improvements in water quality after treatment, the effectiveness of restoration varied temporally, spatially and among biological response variables. The fastest recovery was observed at stations where restoration eliminated point sources of metal contamination. Recovery of macroinvertebrates was significantly delayed at some stations because of residual sediment contamination and because extreme seasonal and episodic variation in metal concentrations prevented recolonization by sensitive species. 4. Synthesis and applications. Because recovery trajectories after the removal of a stressor are often complex or nonlinear, long-term studies are necessary to assess restoration success within the context of episodic events and changes in regional climate. The observed variation in recovery among chemical and biological endpoints highlights the importance of developing objective criteria to assess restoration success. Although the rapid response of macroinvertebrates to reduced metal concentrations is encouraging, we have previously demonstrated that benthic communities from the Arkansas River remained susceptible to other novel anthropogenic stressors. We suggest that the resistance or resilience of benthic macroinvertebrate communities to novel stressors may be effective indicators of restoration success that can account for the non-additive (e.g. synergistic) nature of compound perturbations.
Water temperature fundamentally influences aquatic diversity and ecosystem health. In Colorado, temperature water quality criteria were revised in January 2007 based on a rigorous evaluation of the thermal requirements of fish species resident in Colorado. This article presents an account of how this process was conducted, and details the resultant criteria. The purpose of developing these criteria was to protect coldwater and warmwater fishes, especially native species such as cutthroat trout (Oncorhynchus clarki), from thermal stress. As such, lethal temperatures and optimal temperature conditions were determined from a literature review for species of the state, and these data were compiled into the Colorado Temperature Database. Acute and chronic thermal thresholds were then calculated for individual fish species. Finally, assemblages of fish were grouped into thermal tiers and temperature criteria were developed based on biological criteria for each assemblage. A case study is presented detailing the integration of science and policy decisions that shaped the development of Colorado's coldwater temperature criteria. Some issues were not resolved during this revision of Colorado's temperature water quality criteria, including protection from thermal shock and from gross changes in diel and seasonal thermal variability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.