Multi‐temporal digital terrain models (DTMs) derived from airborne or uncrewed aerial vehicle (UAV)‐borne light detection and ranging (LiDAR) platforms are frequently used tools in geomorphic impact studies. Accurate estimation of mobilized sediments from multi‐temporal DTMs is indispensable for hazard assessment. To study volumetric changes in alpine environments it is crucial to identify and discuss different kind of error sources in multi‐temporal data. We subdivided errors into those caused by data acquisition, data processing, and spatial properties of the terrain. In terms of the quantification of surface changes, the propagation of errors can lead to high uncertainties. Three alpine catchments with different LiDAR point clouds of different origins (airborne laser scanning [ALS], UAV‐borne laser scanning [ULS]), varying point densities, accuracies and qualities were analysed, and used as basis for interpolating DTMs. The workflow was developed in the Schöttlbach area in Styria and later applied to further catchments in Austria. The main aim of the presented work is a comprehensive DTM uncertainty analysis specially designed for geomorphic impact studies, with a resulting uncertainty analysis serving as input for a change detection tool. Our findings reveal that geomorphic impact studies need the careful distinction between actual surface changes and different data uncertainties. ULS combines the benefits of terrestrial laser scanning with all the benefits of ALS. However, the use of ULS data does not necessarily improve the results of the analysis since the high level of detail is not always helpful in geomorphic impact studies. In order to make the different point clouds and DTMs comparable the quality of the ULS point cloud had to be reduced to fit the accuracy of the reference data (older ALS point clouds). Using a point cloud with a high point density with a regular planimetric point spacing and less data gaps, in the best case collected during leaf‐off conditions (e.g., cross‐flight strategy) turned out to be sufficient for our geomorphic research purposes.
ZusammenfassungRezent häufigere Hochwasserereignisse und die besondere Vulnerabilität des Alpenraums gegenüber dem Klimawandel erhöhen die gesellschaftliche und politische Nachfrage nach robusten Informationen über mögliche zukünftige Entwicklungen. Ergebnisse numerischer Modellierungen in Verbindung mit Expertenmeinungen stellen ein wichtiges Instrument zur Abschätzung zukünftiger Veränderungen dar und ermöglichen die Untersuchung von Gebieten, in denen es nur wenige oder gar keine Sediment- bzw. Abflussmessungen gibt. Die Verwendung von quelloffenen (Open Source) und frei verfügbaren Modellen trägt dabei wesentlich zu Transparenz und wissenschaftlicher Nachvollziehbarkeit bei. Im vorliegenden Beitrag möchten wir eine Modellkette aus frei verfügbaren bzw. Open-Source-Modellen zur Simulation von Abflüssen und Sedimentfrachten am Beispiel des Schöttlbachs (Niedere Tauern) vorstellen und Einblicke in erste Ergebnisse geben.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.