Cell therapy remains an experimental treatment for neurological disorders. A major obstacle in pursuing the clinical application of this therapy is fi nding the optimal cell type that will allow benefi t to a large patient population with minimal complications. A cell type that is a complete match of the transplant recipient appears as an optimal scenario. Here, we report that menstrual blood may be an important source of autologous stem cells. Immunocytochemical assays of cultured menstrual blood reveal that they express embryonic-like stem cell phenotypic markers (Oct4, SSEA, Nanog), and when grown in appropriate conditioned media, express neuronal phenotypic markers (Nestin, MAP2). In order to test the therapeutic potential of these cells, we used the in vitro stroke model of oxygen glucose deprivation (OGD) and found that OGD-exposed primary rat neurons that were co-cultured with menstrual blood-derived stem cells or exposed to the media collected from cultured menstrual blood exhibited signifi cantly reduced cell death. Trophic factors, such as VEGF, BDNF, and NT-3, were up-regulated in the media of OGD-exposed cultured menstrual blood-derived stem cells. Transplantation of menstrual blood-derived stem cells, either intracerebrally or intravenously and without immunosuppression, after experimentally induced ischemic stroke in adult rats also signifi cantly reduced behavioral and histological impairments compared to vehicle-infused rats. Menstrual blood-derived cells exemplify a source of "individually tailored" donor cells that completely match the transplant recipient, at least in women. The present neurostructural and behavioral benefi ts afforded by transplanted menstrual blood-derived cells support their use as a stem cell source for cell therapy in stroke.
We recently demonstrated that blood–brain barrier permeabilization using mannitol enhances the therapeutic efficacy of systemically administered human umbilical cord blood (HUCB) by facilitating the entry of neurotrophic factors from the periphery into the adult stroke brain. Here, we examined whether the same blood–brain barrier manipulation approach increases the therapeutic effects of intravenously delivered HUCB in a neonatal hypoxic-ischaemic (HI) injury model. Seven-day-old Sprague–Dawley rats were subjected to unilateral HI injury and then at day 7 after the insult, animals intravenously received vehicle alone, mannitol alone, HUCB cells (15k mononuclear fraction) alone or a combination of mannitol and HUCB cells. Behavioural tests at post-transplantation days 7 and 14 showed that HI animals that received HUCB cells alone or when combined with mannitol were significantly less impaired in motor asymmetry and motor coordination compared with those that received vehicle alone or mannitol alone. Brain tissues from a separate animal cohort from the four treatment conditions were processed for enzyme-linked immunosorbent assay at day 3 post-transplantation, and revealed elevated levels of GDNF, NGF and BDNF in those that received HUCB cells alone or when combined with mannitol compared with those that received vehicle or mannitol alone, with the combined HUCB cells and mannitol exhibiting the most robust neurotropic factor up-regulation. Histological assays revealed only sporadic detection of HUCB cells, suggesting that the trophic factor–mediated mechanism, rather than cell replacement per se, principally contributed to the behavioural improvement. These findings extend the utility of blood–brain barrier permeabilization in facilitating cell therapy for treating neonatal HI injury.
BackgroundAmyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting upper and lower motor neurons in the CNS and leading to paralysis and death. There are currently no effective treatments for ALS due to the complexity and heterogeneity of factors involved in motor neuron degeneration. A complex of interrelated effectors have been identified in ALS, yet systemic factors indicating and/or reflecting pathological disease developments are uncertain. The purpose of the study was to identify humoral effectors as potential biomarkers during disease progression.MethodsThirteen clinically definite ALS patients and seven non-neurological controls enrolled in the study. Peripheral blood samples were obtained from each ALS patient and control at two visits separated by 6 months. The Revised ALS Functional Rating Scale (ALSFRS-R) was used to evaluate overall ALS-patient functional status at each visit. Eleven humoral factors were analyzed in sera. Cytokine levels (GM-CSF, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, and TNF-α) were determined using the Bio-Rad Bio-Plex® Luminex 200 multiplex assay system. Nitrite, a breakdown product of NO, was quantified using a Griess Reagent System. Glutathione (GSH) concentrations were measured using a Glutathione Fluorometric Assay Kit.ResultsALS patients had ALSFRS-R scores of 30.5 ± 1.9 on their first visit and 27.3 ± 2.7 on the second visit, indicating slight disease progression. Serum multiplex cytokine panels revealed statistically significant changes in IL-2, IL-5, IL-6, and IL-8 levels in ALS patients depending on disease status at each visit. Nitrite serum levels trended upwards in ALS patients while serum GSH concentrations were drastically decreased in sera from ALS patients versus controls at both visits.ConclusionsOur results demonstrated a systemic pro-inflammatory state and impaired antioxidant system in ALS patients during disease progression. Increased levels of pro-inflammatory IL-6, IL-8, and nitrite and significantly decreased endogenous antioxidant GSH levels could identify these humoral constituents as systemic biomarkers for ALS. However, systemic changes in IL-2, IL-5, and IL-6 levels determined between visits in ALS patients might indicate adaptive immune system responses dependent on current disease stage. These novel findings, showing dynamic changes in humoral effectors during disease progression, could be important for development of an effective treatment for ALS.
SUMMARY Background and purpose We investigated the neurorestorative effects and underlying mechanisms of stroke treatment with human umbilical cord blood cells (HUCBCs) in Type one diabetes mellitus (T1DM) rats. Methods Type one diabetes mellitus rats were subjected to middle cerebral artery occlusion (MCAo) and 24 h later were treated with: (1) phosphate-buffered-saline; (2) HUCBCs. Brain endothelial cells (MBECs) were cultured and capillary tube formation was measured. Results Human umbilical cord blood cells treatment significantly improved functional outcome and promoted white matter (WM) remodeling, as identified by Bielschowsky silver, Luxol fast blue and SMI-31 expression, increased oligodendrocyte progenitor cell and oligodendrocyte density after stroke in T1DM rats. HUCBC also promoted vascular remodeling, evident from enhanced vascular and arterial density and increased artery diameter, and decreased blood-brain barrier leakage. HUCBC treatment also increased Angiopoietin-1 and decreased receptor for advanced glycation end-products (RAGE) expression compared to T1DM-MCAo control. In vitro analysis of MBECs demonstrated that Ang1 inversely regulated RAGE expression. HUCBC and Ang1 significantly increased capillary tube formation and decreased inflammatory factor expression, while anti-Ang1 attenuated HUCBC-induced tube formation and antiinflammatory effects. Conclusion Human umbilical cord blood cells is an effective neurorestorative therapy in T1DM-MCAo rats and the enhanced vascular and WM remodeling and associated functional recovery after stroke may be attributed to increasing Angiopoietin-1 and decreasing RAGE.
BackgroundAmyotrophic Lateral Sclerosis (ALS) is a multicausal disease characterized by motor neuron degeneration in the spinal cord and brain. Cell therapy may be a promising new treatment for this devastating disorder. We recently showed that a single low dose (106 cells) of mononuclear human umbilical cord blood (MNC hUCB) cells administered intravenously to G93A mice delayed symptom progression and modestly prolonged lifespan. The aim of this pre-clinical translation study is to optimize the dose of MNC hUCB cells to retard disease progression in G93A mice. Three different doses of MNC hUCB cells, 10×106, 25×106 and 50×106, were administered intravenously into pre-symptomatic G93A mice. Motor function tests and various assays to determine cell effects were performed on these mice.Methodology/Principal FindingsOur results showed that a cell dose of 25×106 cells significantly increased lifespan of mice by 20–25% and delayed disease progression by 15%. The most beneficial effect on decreasing pro-inflammatory cytokines in the brain and spinal cord was found in this group of mice. Human Th2 cytokines were found in plasma of mice receiving 25×106 cells, although prevalent human Th1 cytokines were indicated in mice with 50×106 cells. High response of splenic cells to mitogen (PHA) was indicated in mice receiving 25×106 (mainly) and 10×106 cells. Significantly increased lymphocytes and decreased neutrophils in the peripheral blood were found only in animals receiving 25×106 cells. Stable reduction in microglia density in both cervical and lumbar spinal cords was also noted in mice administered with 25×106 cells.Conclusions/SignificanceThese results demonstrate that treatment for ALS with an appropriate dose of MNC hUCB cells may provide a neuroprotective effect for motor neurons through active involvement of these cells in modulating the host immune inflammatory system response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.