Lemons (Citrus limon) are a desirable citrus fruit grown and used globally in a wide range of applications. The main constituents of this sour-tasting fruit have been well quantitated and characterized. However, additional research is still necessary to better understand the trace volatile compounds that may contribute to the overall aroma of the fruit. In this study, Lisbon lemons (C. limon L. Burm. f. cv. Lisbon) were purchased from a grove in California, USA, and extracted by liquid-liquid extraction. Fractionation and multidimensional gas chromatography-mass spectrometry were utilized to separate, focus, and enhance unidentified compounds. In addition, these methods were employed to more accurately assign flavor dilution factors by aroma extract dilution analysis. Numerous compounds were identified for the first time in lemons, including a series of branched aliphatic aldehydes and several novel sulfur-containing structures. Rarely reported in citrus peels, sulfur compounds are known to contribute significantly to the aroma profile of the fruit and were found to be aroma-active in this particular study on lemons. This paper discusses the identification, synthesis, and organoleptic properties of these novel volatile sulfur compounds.
Grown predominantly in France, Ciflorette strawberries (Fragaria × ananassa ‘Ciflorette’) possess a well‐balanced fruity aroma and a sweet, creamy taste. The goal of this study was to better understand the chemical composition and key odourants of this unique fruit. Incorporating fractionation and multidimensional gas chromatography‐mass spectrometry (MDGC‐MS), the volatile constituents of Ciflorette strawberries are discussed for the first time from the large‐scale extraction of 100 kg of the pureed berries. A total of 24 volatile sulphur compounds were either absolutely confirmed by synthesis or tentatively identified from the different analyses. Three sulphur compounds were synthesized and described in nature for the first time: 1‐(methylthio)‐2,3‐butanedione, 3‐(acetylthio)‐hexanal and 2,6‐dipropyl‐3‐formyl‐5,6‐dihydro‐2H‐thiopyran. Finally, GC‐olfactometry (O) conducted by seven panelists led to the identification of 43 aroma‐active compounds in the strawberry extract. Copyright © 2015 John Wiley & Sons, Ltd.
The isomers of 3,7-dimethyl-2,6-octadienal, more commonly known together as citral, are two of the most notable natural compounds in the flavor and fragrance industry. However, both isomers are inherently unstable, limiting their potential use in various applications. To identify molecules in nature that can impart the fresh lemon character of citral while demonstrating stability under acidic and thermal conditions has been a major challenge and goal for the flavor and fragrance industry. In the study of fried chicken, several alkyl thiophenecarbaldehydes were identified by gas chromatography-mass spectrometry and gas chromatography-olfactometry that provided a similar citral-like aroma. The potential mechanism of formation in fried chicken is discussed. Furthermore, in order to explore the organoleptic properties of this structural backbone, a total of 35 thiophenecarbaldehyde derivatives were synthesized or purchased for evaluation by odor and taste. Certain organoleptic trends were observed as the length of the alkyl or alkenyl chain increased or when the chain was moved to different positions on the thiophene backbone. The 3-substituted alkyl thiophenecarbaldehydes, specifically 3-butyl-2-thiophenecarbaldehyde and 3-(3-methylbut-2-en-1-yl)-2-thiophenecarbaldehyde, exhibited strong citrus and citral-like notes. Several alkyl thiophenecarbaldehydes were tested in high acid stability trials (4 °C vs 38 °C) and outperformed citral both in terms of maintaining freshness over time and minimizing off-notes. Additional measurements were completed to calculate the odor thresholds for a select group of thiophenecarbaldehydes, which were found to be between 4.7-215.0 ng/L in air.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.