No-tillage (NT), a practice that has been shown to increase carbon sequestration in soils, has resulted in contradictory effects on nitrous oxide (N 2 O) emissions. Moreover, it is not clear how mitigation practices for N 2 O emission reduction, such as applying nitrogen (N) fertilizer according to soil N reserves and matching the time of application to crop uptake, interact with NT practices. N 2 O fluxes from two management systems [conventional (CP), and best management practices: NT 1reduced fertilizer (BMP)] applied to a corn (Zea mays L.), soybean (Glycine max L.), winter-wheat (Triticum aestivum L.) rotation in Ontario, Canada, were measured from January 2000 to April 2005, using a micrometeorological method. The superimposition of interannual variability of weather and management resulted in mean monthly N 2 O fluxes ranging from À1.9 to 61.3 g N ha À1 day À1 . Mean annual N 2 O emissions over the 5-year period decreased significantly by 0.79 from 2.19 kg N ha À1 for CP to 1.41 kg N ha À1 for BMP. Growing season (May-October) N 2 O emissions were reduced on average by 0.16 kg N ha À1 (20% of total reduction), and this decrease only occurred in the corn year of the rotation. Nongrowing season (November-April) emissions, comprised between 30% and 90% of the annual emissions, mostly due to increased N 2 O fluxes during soil thawing. These emissions were well correlated (r 2 5 0.90) to the accumulated degree-hours below 0 1C at 5 cm depth, a measure of duration and intensity of soil freezing. Soil management in BMP (NT) significantly reduced N 2 O emissions during thaw (80% of total reduction) by reducing soil freezing due to the insulating effects of the larger snow cover plus corn and wheat residue during winter. In conclusion, significant reductions in net greenhouse gas emissions can be obtained when NT is combined with a strategy that matches N application rate and timing to crop needs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.