People with Parkinson's disease (PD) can exhibit disabling gait symptoms such as freezing of gait especially when distracted by a secondary task. Quantitative measurement method of this type of cognitive-motor abnormality, however, remains poorly developed. Here we examined whether stepping-in-place (SIP) with a concurrent mental task (e.g., subtraction) can be used as a simple method for evaluating cognitive-motor deficits in PD. We used a 4th generation iPod Touch sensor system to capture hip flexion data and obtain step height (SH) measurements (z axis). The accuracy of the method was compared to and validated by kinematic video analysis software. We found a general trend of reduced SH for PD subjects relative to controls under all conditions. However, the SH of PD freezers was significantly worse than PD non-freezers and controls during concurrent serial 7 subtraction and SIP tasking. During serial 7 subtraction, SH was significantly associated with whether or not a PD patient was a self-reported freezer even when controlling for disease severity. Given that this SIP-based dual-task paradigm is not limited by space requirements and can be quantified using a mobile tracking device that delivers specifically designed auditory task instructions, the method reported here may be used to standardize clinical assessment of cognitive-motor deficits under a variety of dual-task conditions in PD.
Background:Deficits in motor movement automaticity in Parkinson's disease (PD), especially during multitasking, are early and consistent hallmarks of cognitive function decline, which increases fall risk and reduces quality of life. This study aimed to test the feasibility and potential efficacy of a wearable sensor-enabled technological platform designed for an in-home music-contingent stepping-in-place (SIP) training program to improve step automaticity during dual-tasking (DT).Methods:This was a 4-week prospective intervention pilot study. The intervention uses a sensor system and algorithm that runs off the iPod Touch which calculates step height (SH) in real-time. These measurements were then used to trigger auditory (treatment group, music; control group, radio podcast) playback in real-time through wireless headphones upon maintenance of repeated large amplitude stepping. With small steps or shuffling, auditory playback stops, thus allowing participants to use anticipatory motor control to regain positive feedback. Eleven participants were recruited from an ongoing trial (Trial Number: ISRCTN06023392). Fear of falling (FES-I), general cognitive functioning (MoCA), self-reported freezing of gait (FOG-Q), and DT step automaticity were evaluated.Results:While we found no significant effect of training on FES-I, MoCA, or FOG-Q, we did observe a significant group (music vs podcast) by training interaction in DT step automaticity (P<0.01).Conclusion:Wearable device technology can be used to enable musically-contingent SIP training to increase motor automaticity for people living with PD. The training approach described here can be implemented at home to meet the growing demand for self-management of symptoms by patients.
ObjectiveThe medical evidence supporting the efficacy of selective dorsal rhizotomy (SDR) on children with spastic diplegia is strong. However, the outcome of SDR on adults with spastic diplegia remains undetermined. The aim is to study the effectiveness and morbidities of SDR performed on adults for the treatment of spastic diplegia. MethodsPatients who received SDR in adulthood for the treatment of spastic diplegia were surveyed. The survey questionnaire addressed the living situation, education level, employment, health outcomes, postoperative changes of symptoms, changes in ambulatory function, adverse effects of SDR and orthopedic surgery after SDR. ResultsThe study included 64 adults, who received SDR for spastic diplegia. The age at the time of surgery was between 18 and 50 years. The age at the time of the survey was between 20 and 52 years. The follow-up period ranged from one to 28 years. The study participants reported post-SDR improvements of the quality of walking in 91%, standing in 81%, sitting in 57%, balance while walking 75%, ability to exercise in 88%, endurance in 77%, and recreational sports in 43%. Muscle and joint pain present before surgery improved in 64% after surgery. Concerning the level of ambulatory function, all patients who walked independently in all environments maintained the same level of ambulatory function. Eighteen percent of the patients who walked independently in some environments improved to the independent walking in all environments. All patients who walked with an assistive device before SDR maintained the assistive walking after SDR. Concerning adverse effects of SDR, 50% (32 of 64 patients) developed numbness in the various parts of the legs. Two patients reported a complete loss of sensation in parts of the legs, and one patient reported numbness and constant pain in the bilateral lower extremities. Ten patients (16%) reported recurrent spasticity after SDR, and three patients (5%) reported ankle clonus, which is an objective sign of spasticity. Tendon lengthening surgery after SDR was needed in 27% and hip and knee surgery in 2% and 6%, respectively. ConclusionsThe great majority of our 64 patients, who received adulthood SDR for spastic diplegia, improved the quality of ambulation and abated signs of early aging. Numbness and diminished sensation in the lower extremity was the most common adverse effect of the adulthood SDR.
BackgroundA limited number of publications have described a reduction of spasticity associated with hereditary spastic paraplegia (HSP) after selective dorsal rhizotomy (SDR). Typically, the SDR procedure is performed on patients with spastic cerebral palsy to remove spasticity and to help these patients with ambulatory function. Whether SDR has similar effects on HSP patients, requires further investigation. Thus, we are providing a personal experience of the effects of SDR on this specific cohort of patients. ObjectivesTo examine the safety of SDR, changes in spasticity, and ambulatory function after SDR on patients with HSP. MethodsThe Institutional Review Board of Washington University School of Medicine approved this study (#201704003). A total of 37 children and adults received SDR for the treatment of HSP-associated spasticity between 1988 and 2021. SDR was performed through an L1 laminectomy, as we previously described in an earlier publication. The patients took part in the follow-up examination either in-person or by email. The follow-up focused on the patients' motor functions (primarily ambulation), adverse effects of SDR, and orthopedic treatments after SDR. ResultsOf the total 37 patients who participated in this study, 46% were female and 54% were male. The age range of when HSP was diagnosed was one month to 34 years. Six of the patients' diagnoses were made, based on the family history of HSP in six patients and the remaining 31 patients' diagnoses were confirmed by genetic tests. The most common genetic mutations were SPG4 and SPG3A. Of the patients with positive genetic tests, 40% had no family history of HSP. SDR was performed at the age of 2 to 45 years (mean: 14.7 years). The follow-up period ranged from 0 to 33 years (mean: 3.8 years). One patient developed a spinal fluid leak requiring surgical repair. Two patients reported mild numbness in parts of the lower limbs. Spasticity was removed in 33 patients (89%). Four patients (11%) experienced a return in spasticity. Regarding ambulatory function, 11% of patients reported a decline in function. Two patients walked independently before surgery but declined, requiring a wheelchair eight years and seven years, respectively, after surgery for each patient. In contrast, 16% saw an improvement in ambulatory function, improving from walking with a walker to walking independently. The remaining 73% of patients maintained their level of ambulation. These two groups of patients showed improvement in other motor functions and independence. ConclusionsThe present analysis suggests the potential role of SDR in the management of spasticity in HSP patients. We found no sign of SDR being a direct cause of deleterious effects on patients with HSP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.