IL-1F6, IL-1F8 and IL-1F9 and the IL-1R6(RP2) receptor antagonist IL-1F5 constitute a novel IL-1 signaling system that is poorly characterized in skin. To further characterize these cytokines in healthy and inflamed skin, we studied their expression in healthy control (NN), uninvolved psoriasis (PN) and psoriasis plaque (PP) skin using QRT-PCR and immunohistochemistry. Expression of IL-1F5, -1F6, -1F8, and -1F9 were increased 2-3 orders of magnitude in PP versus PN skin, which was supported immunohistologically. Moreover, treatment of psoriasis with etanercept led to significantly decreased IL-1F5, -1F6, -1F8 and -1F9 mRNAs, concomitant with clinical improvement. Similarly increased expression of IL-1F5, -1F6, -1F8 and -1F9 was seen in the involved skin of two mouse models of psoriasis. Suggestive of their importance in inflamed epithelia, IL-1α and TNF-α induced IL-1F5, -1F6, -1F8, and -1F9 transcript expression by normal human keratinocytes. Microarray analysis revealed that these cytokines induce the expression of anti-microbial peptides and matrix metalloproteins by reconstituted human epidermis. In particular, IL-1F8 increased mRNA expression of HBD2, HBD3 and CAMP and protein secretion of HBD2 and HBD3. Collectively, our data suggest important roles for these novel cytokines in inflammatory skin diseases and identify these peptides as potential targets for antipsoriatic therapies.
IL-17C is a functionally distinct member of the IL-17 family that binds IL-17RE/A to promote innate defense in epithelial cells and regulate Th17 cell differentiation. We demonstrate that IL-17C (not IL-17A) is the most abundant IL-17 isoform in lesional psoriasis skin (1058pg/ml vs. 8pg/ml; p<0.006) and localizes to keratinocytes (KCs), endothelial cells (ECs) and leukocytes. ECs stimulated with IL-17C produce increased TNFα and KCs stimulated with IL-17C/TNFα produce similar inflammatory gene response patterns as those elicited by IL-17A/TNFα, including increases in IL-17C, TNFα, IL-8, IL-1α/β, IL-1F5, IL-1F9, IL-6, IL-19, CCL20, S100A7/A8/A9, DEFB4, LCN2 and PI3 (p<0.05); indicating a positive pro-inflammatory feedback loop between the epidermis and ECs. Psoriasis patients treated with etanercept rapidly decrease cutaneous IL-17C levels, suggesting IL-17C/TNFα-mediated inflammatory signaling is critical for psoriasis pathogenesis. Mice genetically engineered to overexpress IL-17C in KCs develop well-demarcated areas of erythematous, flakey “involved” skin adjacent to areas of normal appearing “uninvolved” skin despite increased IL-17C expression in both areas (p<0.05). Uninvolved skin displays increased angiogenesis and elevated S100A8/A9expression (p<0.05) but no epidermal hyperplasia; whereas involved skin exhibits robust epidermal hyperplasia, increased angiogenesis and leukocyte infiltration and upregulated TNFα, IL-1α/β, IL-17A/F, IL-23p19, VEGF, IL-6 and CCL20 (p<0.05) suggesting that IL-17C, when coupled with other pro-inflammatory signals, initiates the development of psoriasiform dermatitis. This skin phenotype was significantly improved following 8 weeks of TNFα inhibition. These findings identify a role for IL-17C in skin inflammation and suggest a pathogenic function for the elevated IL-17C observed in lesional psoriasis skin.
The IL-1 family members IL-36α (IL-1F6), IL-36β (IL-1F8) and IL-36γ (IL-1F9) and the receptor antagonist IL-36Ra (IL-1F5) constitute a novel signaling system that is poorly understood. We now show that these cytokines have profound effects on the skin immune system. Treatment of human keratinocytes with IL-36 cytokines significantly increased the expression of CXCL1, CXCL8, CCL3, CCL5, and CCL20, potent chemotactic agents for activated leukocytes, and IL-36α injected intradermally resulted in chemokine expression, leukocyte infiltration and acanthosis of mouse skin. Blood monocytes, myeloid dendritic cells (DC) and monocyte-derived DC (MO-DC) expressed IL-36R and responded to IL-36. In contrast, no direct effects of IL-36 on resting or activated human CD4+ or CD8+ T cells, or blood neutrophils, could be demonstrated. Monocytes expressed IL-1A, IL-1B and IL-6 mRNA and IL-1β and IL-6 protein and mDC upregulated surface expression of CD83, CD86 and HLADR and secretion of IL-1β and IL-6 after treatment with IL-36. Furthermore, IL-36α-treated MO-DC enhanced allogeneic CD4+ T cell proliferation, demonstrating that IL-36 can stimulate the maturation and function of DC and drive T cell proliferation. These data indicate that IL-36 cytokines actively propagate skin inflammation via the activation of keratinocytes, antigen presenting cells and, indirectly, T cells.
SUMMARY Basal cell carcinoma (BCC) is characterized by frequent loss of PTCH1, leading to constitutive activation of the Hedgehog pathway. Although the requirement for Hedgehog in BCC is well-established, the identity of disease-initiating cells and the compartments in which they reside remain controversial. By using several inducible Cre drivers to delete Ptch1 in different cell compartments in mice, we show here that multiple hair follicle stem cell populations readily develop BCC-like tumors. In contrast, stem cells within the interfollicular epidermis do not efficiently form tumors. Notably, we observed that innervated Gli1-expressing progenitors within mechanosensory touch dome epithelia are highly tumorigenic. Sensory nerves activate Hedgehog signaling in normal touch domes, while denervation attenuates touch dome-derived tumors. Together, our studies identify varying tumor susceptibilities among different stem cell populations in the skin, highlight touch dome epithelia as “hot spots” for tumor formation, and implicate cutaneous nerves as mediators of tumorigenesis.
Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments.However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional profiling is used to compare gene expression patterns manifested by human psoriatic skin lesions with those that occur in five psoriasis mouse models (K5-Tie2, imiquimod, K14-AREG, K5-Stat3C and K5-TGFbeta1). While the cutaneous gene expression profiles associated with each mouse phenotype exhibited statistically significant similarity to the expression profile of psoriasis in humans, each model displayed distinctive sets of similarities and differences in comparison to human psoriasis. For all five models, correspondence to the human disease was strong with respect to genes involved in epidermal development and keratinization. Immune and inflammation-associated gene expression, in contrast, was more variable between models as compared to the human disease. These findings support the value of all five models as research tools, each with identifiable areas of convergence to and divergence from the human disease. Additionally, the approach used in this paper provides an objective and quantitative method for evaluation of proposed mouse models of psoriasis, which can be strategically applied in future studies to score strengths of mouse phenotypes relative to specific aspects of human psoriasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.