SUMMARY A small molecule that safely mimics the ability of dietary restriction (DR) to delay age-related diseases in laboratory animals is greatly sought after. We and others have shown that resveratrol mimics effects of DR in lower organisms. In mice, we find that resveratrol induces gene expression patterns in multiple tissues that parallel those induced by DR and every-other-day feeding. Moreover, resveratrol-fed elderly mice show a marked reduction in signs of aging including reduced albuminuria, decreased inflammation and apoptosis in the vascular endothelium, increased aortic elasticity, greater motor coordination, reduced cataract formation, and preserved bone mineral density. However, mice fed a standard diet did not live longer when treated with resveratrol beginning at 12 months of age. Our findings indicate that resveratrol treatment has a range of beneficial effects in mice but does not increase the longevity of ad libitum-fed animals when started mid-life.
To increase our understanding of psoriasis, we utilized RNA-seq to assay the transcriptomes of lesional psoriatic and normal skin. We sequenced polyadenylated RNA-derived cDNAs from 92 psoriatic and 82 normal punch biopsies, generating an average of ~38 million single-end 80-bp reads per sample. Comparison of 42 samples examined by both RNA-seq and microarray revealed marked differences in sensitivity, with transcripts identified only by RNA-seq having much lower expression than those also identified by microarray. RNA-seq identified many more differentially expressed transcripts enriched in immune system processes. Weighted gene co-expression network analysis (WGCNA) revealed multiple modules of coordinately expressed epidermal differentiation genes, overlapping significantly with genes regulated by the long non-coding RNA TINCR, its target gene, staufen-1 (STAU1), the p63 target gene ZNF750, and its target KLF4. Other coordinately expressed modules were enriched for lymphoid and/or myeloid signature transcripts and genes induced by IL-17 in keratinocytes. Dermally-expressed genes were significantly down-regulated in psoriatic biopsies, most likely due to expansion of the epidermal compartment. These results demonstrate the power of WGCNA to elucidate gene regulatory circuits in psoriasis, and emphasize the influence of tissue architecture in both differential expression and co-expression analysis.
Background: The heat shock response of Arabidopsis thaliana is dependent upon a complex regulatory network involving twenty-one known transcription factors and four heat shock protein families. It is known that heat shock proteins (Hsps) and transcription factors (Hsfs) are involved in cellular response to various forms of stress besides heat. However, the role of Hsps and Hsfs under cold and non-thermal stress conditions is not well understood, and it is unclear which types of stress interact least and most strongly with Hsp and Hsf response pathways. To address this issue, we have analyzed transcriptional response profiles of Arabidopsis Hsfs and Hsps to a range of abiotic and biotic stress treatments (heat, cold, osmotic stress, salt, drought, genotoxic stress, ultraviolet light, oxidative stress, wounding, and pathogen infection) in both above and belowground plant tissues.
Atopic dermatitis (AD) affects up to 20% of children and adults worldwide. To gain a deeper understanding of the pathophysiology of AD, we conducted a large-scale transcriptomic study of AD with deeply sequenced RNA-sequencing samples using long (126-bp) paired-end reads. In addition to the comparisons against previous transcriptomic studies, we conducted in-depth analysis to obtain a high-resolution view of the global architecture of the AD transcriptome and contrasted it with that of psoriasis from the same cohort. By using 147 RNA samples in total, we found striking correlation between dysregulated genes in lesional psoriasis and lesional AD skin with 81% of AD dysregulated genes being shared with psoriasis. However, we described disease-specific molecular and cellular features, with AD skin showing dominance of IL-13 pathways, but with near undetectable IL-4 expression. We also demonstrated greater disease heterogeneity and larger proportion of dysregulated long noncoding RNAs in AD, and illustrated the translational impact, including skin-type classification and drug-target prediction. This study is by far the largest study comparing the AD and psoriasis transcriptomes using RNA sequencing and demonstrating the shared inflammatory components, as well as specific discordant cytokine signatures of these two skin diseases.
BackgroundAlthough analysis pipelines have been developed to use RNA-seq to identify long non-coding RNAs (lncRNAs), inference of their biological and pathological relevance remains a challenge. As a result, most transcriptome studies of autoimmune disease have only assessed protein-coding transcripts.ResultsWe used RNA-seq data from 99 lesional psoriatic, 27 uninvolved psoriatic, and 90 normal skin biopsies, and applied computational approaches to identify and characterize expressed lncRNAs. We detect 2,942 previously annotated and 1,080 novel lncRNAs which are expected to be skin specific. Notably, over 40% of the novel lncRNAs are differentially expressed and the proportions of differentially expressed transcripts among protein-coding mRNAs and previously-annotated lncRNAs are lower in psoriasis lesions versus uninvolved or normal skin. We find that many lncRNAs, in particular those that are differentially expressed, are co-expressed with genes involved in immune related functions, and that novel lncRNAs are enriched for localization in the epidermal differentiation complex. We also identify distinct tissue-specific expression patterns and epigenetic profiles for novel lncRNAs, some of which are shown to be regulated by cytokine treatment in cultured human keratinocytes.ConclusionsTogether, our results implicate many lncRNAs in the immunopathogenesis of psoriasis, and our results provide a resource for lncRNA studies in other autoimmune diseases.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-014-0570-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.