Familial inheritance of drug abuse is composed of both genetic and environmental factors. Additionally, epigenetic transgenerational inheritance may provide a means by which parental drug use can influence several generations of offspring. Recent evidence suggests that parental drug exposure produces behavioral, biochemical, and neuroanatomical changes in future generations. The focus of this review is to discuss these multigenerational and transgenerational phenotypes in the offspring of animals exposed to drugs of abuse. Specifically, changes found following the administration of alcohol, opioids, cocaine, marijuana, and nicotine will be discussed. In addition, epigenetic modifications to the genome following administration of these drugs will be detailed as well as their potential for transmission to the next generation.
Fragile X syndrome (FXS) is the leading cause of both intellectual disability and autism resulting from a single gene mutation. Previously, we characterized cognitive impairments and brain structural defects in a Drosophila model of FXS and demonstrated that these impairments were rescued by treatment with metabotropic glutamate receptor (mGluR) antagonists or lithium. A well-documented biochemical defect observed in fly and mouse FXS models and FXS patients is low cAMP levels. cAMP levels can be regulated by mGluR signaling. Herein, we demonstrate PDE-4 inhibition as a therapeutic strategy to ameliorate memory impairments and brain structural defects in the Drosophila model of fragile X. Furthermore, we examine the effects of PDE-4 inhibition by pharmacologic treatment in the fragile X mouse model. We demonstrate that acute inhibition of PDE-4 by pharmacologic treatment in hippocampal slices rescues the enhanced mGluR-dependent LTD phenotype observed in FXS mice. Additionally, we find that chronic treatment of FXS model mice, in adulthood, also restores the level of mGluR-dependent LTD to that observed in wild-type animals. Translating the findings of successful pharmacologic intervention from the Drosophila model into the mouse model of FXS is an important advance, in that this identifies and validates PDE-4 inhibition as potential therapeutic intervention for the treatment of individuals afflicted with FXS.
Adolescence is a time period in development when the brain undergoes substantial remodeling in response to the environment. To determine whether a stressful experience during adolescence affects adult behavior, we exposed adolescent male and female C57BL/6J mice to chronic unpredictable stress (CUS) for 12 days starting at postnatal day 28 (PND28). We also exposed adult male and female mice to CUS for 12 days beginning at PND70 to determine whether adolescence is a sensitive time period when stress can have long-lasting effects on behavior. Regardless of when mice were exposed to stress, they were all tested exactly 30 days later in the marble burying task, elevated zero maze, acoustic startle response, and forced swim test. Adolescent stress exposure increased anxiety-like behaviors in adult male and female mice and decreased acoustic startle response in a sex-dependent manner. However, adult stress exposure did not change anxiety or response to an acoustic tone in adult male or female mice as compared with nonstressed animals. Of interest, increased depression-like behavior in the forced swim test was observed in all mice, regardless of when the stress occurred. Gene expression analysis showed significant upregulation of corticotropin releasing factor receptor 2 (CrfR2) in the amygdala of males subjected to CUS during adolescence, but not in males that experienced CUS during adulthood. In contrast, females, regardless of when they were exposed to CUS, were not affected. These data support clinical evidence suggesting that early-life stress may predispose individuals to increased anxiety and depression later in life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.