Type I fibrillar collagen is the most abundant protein in the human body, crucial for the formation and strength of bones, skin, and tendon. Proteolytic enzymes are essential for initiation of the assembly of collagen fibrils by cleaving off the propeptides. We report that Mep1a −/− and Mep1b −/− mice revealed lower amounts of mature collagen I compared with WT mice and exhibited significantly reduced collagen deposition in skin, along with markedly decreased tissue tensile strength. While exploring the mechanism of this phenotype, we found that cleavage of full-length human procollagen I heterotrimers by either meprin α or meprin β led to the generation of mature collagen molecules that spontaneously assembled into collagen fibrils. Thus, meprin α and meprin β are unique in their ability to process and release both C-and N-propeptides from type I procollagen in vitro and in vivo and contribute to the integrity of connective tissue in skin, with consequent implications for inherited connective tissue disorders.proteolysis | Ehlers-Danlos syndrome | proteomics | fibrosis | connective tissue
Low band gap D-A conjugated PNs consisting of 2-ethylhexyl cyclopentadithiophene co-polymerized with 2,1,3-benzothiadiazole (for nano-PCPDTBT) or 2,1,3-benzoselenadiazole (for nano-PCPDTBSe) have been developed. The PNs are stable in aqueous media and showed no significant toxicity up to 1 mg · mL(-1) . Upon exposure to 808 nm light, the PNs generated temperatures above 50 °C. Photothermal ablation studies of the PNs with RKO and HCT116 colorectal cancer cells were performed. At concentrations above 100 µg · mL(-1) for nano-PCPDTBSe, cell viability was less than 20%, while at concentrations above 62 µg · mL(-1) for nano-PCPDTBT, cell viability was less than 10%. The results of this work demonstrate that low band gap D-A conjugated polymers 1) can be formed into nanoparticles that are stable in aqueous media; 2) are non-toxic until stimulated by IR light and 3) have a high photothermal efficiency.
Breast tumors have their own specific microbiota, distinct from normal mammary gland tissue. Patients with breast cancer that present with locally advanced disease often undergo neoadjuvant chemotherapy to reduce tumor size prior to surgery to allow breast conservation or limit axillary lymph node dissection. The purpose of our study was to evaluate whether neoadjuvant chemotherapy modulates the tumor microbiome and the potential impact of microbes on breast cancer signaling. Using snap-frozen aseptically collected breast tumor tissue from women who underwent neoadjuvant chemotherapy (n ¼ 15) or women with no prior therapy at time of surgery (n ¼ 18), we performed 16S rRNA-sequencing to identify tumoral bacterial populations. We also stained breast tumor microarrays to confirm presence of identified microbiota. Using bacteria-conditioned media, we determined the effect of bacterial metabolites on breast cancer cell proliferation and doxorubicin therapy responsiveness. We show chemotherapy adminis-tration significantly increased breast tumor Pseudomonas spp. Primary breast tumors from patients who developed distant metastases displayed increased tumoral abundance of Brevundimonas and Staphylococcus. We confirmed presence of Pseudomonas in breast tumor tissue by IHC staining. Treatment of breast cancer cells with Pseudomonas aeruginosa conditioned media differentially effected proliferation in a dose-dependent manner and modulated doxorubicin-mediated cell death. Our results indicate chemotherapy shifts the breast tumor microbiome and specific microbes correlate with tumor recurrence. Further studies with a larger patient cohort may provide greater insights into the role of microbiota in therapeutic outcome and develop novel bacterial biomarkers that could predict distant metastases.Implications: Breast tumor microbiota are modified by therapy and affects molecular signaling.
Recovery from systemic or local bacterial infections can be lengthy and costly, with the clinical challenges being further complicated when bacteria acquire resistance to current antibiotics. Hyperthermia offers new mechanisms for removing bacteria via ablation, or sensitising them to chemical agents. The first part of this review provides a background on the bacterial biofilms, their response to hyperthermia, and acquired resistance to antibiotics, followed by the clinical challenges they present in managing infections associated with soft tissues and biomedical implants. The second part of the review discusses the thermal modalities used to combat infections, including radiofrequency, ultrasound, highintensity focussed ultrasound, microwave thermotherapy, and photothermal and magnetic nanoparticles (NP). The overall aim of this review is to demonstrate the tremendous potential of hyperthermia for mitigating bacterial infections and foster new research ventures to help remedy these challenging occurrences.
Oysters are an ecologically important group of filter-feeders, and a valuable toxicology model for characterizing the potential impacts of nanoparticles to marine organisms. Fullerene (C60) exposure studies with oysters, Crassostrea virginica, were conducted with a variety of biological levels, e.g., developmental studies with embryos, whole organism exposures with adults, and isolated hepatopancreas cells. Significant effects on embryonic development and lysosomal destabilization were observed at concentrations as low as 10 ppb. Moreover, based on our extensive experience with the lysosomal assay, the lysosomal destabilization rates at fullerene concentrations > or = 100 ppb were regarded as biologically significant as they are associated with reproductive failure. Interestingly, there was no significant increase in lipid peroxidation levels in hepatopancreas tissues. Oyster hepatopancreas tissues are composed of lysosomal rich cells, and confocal microscopy studies indicated thatthe fullerene particles readily accumulated inside hepatopancreas cells within 4 h. Fullerene aggregates tended to be localized and concentrated into lysosomes. The microscopic work in conjunction with the lysosomal function assays supports the premise that endocytotic and lysosomal pathways may be major targets of fullerenes and other nanoparticles. Nanoparticles that affect normal lysosomal and autophagic processes may contribute to long-term, chronic problems for individual health as well as ecosystem health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.