Novel disease modifying therapies are being evaluated in spinocerebellar ataxias and multiple system atrophy. Clinician-performed disease rating scales are relatively insensitive for measuring disease change over time, resulting in large and long clinical trials. We tested the hypothesis that sensors worn continuously at home during natural behavior and a web-based computer mouse task performed at home could produce interpretable, meaningful, and reliable motor measures for potential use in clinical trials. Thirty-four individuals with degenerative ataxias (spinocerebellar ataxia types 1, 2, 3, and 6 and multiple system atrophy of the cerebellar type) and eight age-matched controls completed the cross-sectional study. Participants wore an ankle and wrist sensor continuously at-home for one week and completed the Hevelius computer mouse task eight times over four weeks. We examined properties of motor primitives called “submovements” derived from the continuous wearable sensors and properties of computer mouse clicks and trajectories in relationship to patient-reported measures of function (PROM-Ataxia) and ataxia rating scales (Scale for the Assessment and Rating of Ataxia and the Brief Ataxia Rating Scale). The test-retest reliability of digital measures and differences between ataxia and control participants were evaluated. Individuals with ataxia had smaller, slower, and less powerful ankle submovements during natural behavior at home. A composite measure based on ankle submovements strongly correlated with ataxia rating scale scores (Pearson’s r = 0.82-0.88), strongly correlated with self-reported function (r = 0.81), had high test-retest reliability (intraclass correlation coefficient = 0.95), and distinguished ataxia and control participants, including preataxic individuals (N=4) from controls. A composite measure based on computer mouse movements and clicks strongly correlated with ataxia rating scale total (r = 0.86-0.88) and arm scores (r = 0.65-0.75), correlated well with self-reported function (r = 0.72-0.73), and had high test-retest reliability (intraclass correlation coefficient = 0.99). These data indicate that interpretable, meaningful, and highly reliable motor measures can be obtained from continuous measurement of natural movement, particularly at the ankle location, and from computer mouse movements during a simple point-and-click task performed at home. This study supports the use of these two inexpensive and easy-to-use technologies in longitudinal natural history studies in spinocerebellar ataxias and multiple system atrophy of the cerebellar type and shows promise as potential motor outcome measures in interventional trials.
Objective: Objective, sensitive, and meaningful disease assessments are critical to support clinical trials and clinical care. Speech changes are one of the earliest and most evident manifestations of cerebellar ataxias. The purpose of this work is to develop models that can accurately identify and quantify these abnormalities. Methods: We use deep learning models such as ResNet 18, that take the time and frequency partial derivatives of the log-mel spectrogram representations of speech as input, to learn representations that capture the motor speech phenotype of cerebellar ataxia. We train classification models to separate patients with ataxia from healthy controls as well as regression models to estimate disease severity. Results: Our model was able to accurately distinguish healthy controls from individuals with ataxia, including ataxia participants with no detectable clinical deficits in speech. Furthermore the regression models produced accurate estimates of disease severity, were able to measure subclinical signs of ataxia, and captured disease progression over time in individuals with ataxia. Conclusion: Deep learning models, trained on time and frequency partial derivatives of the speech signal, can detect sub-clinical speech changes in ataxias and sensitively measure disease change over time. Significance: Such models have the potential to assist with early detection of ataxia and to provide sensitive and low- burden assessment tools in support of clinical trials and neurological care.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.