Endothelium-dependent hyperpolarization of vascular smooth muscle provides a major pathway for relaxation in resistance arteries. This can occur due to direct electrical coupling via myoendothelial gap junctions (MEGJs) and/or the release of factors (EDHF). Here we provide evidence for the existence of functional MEGJs in the same, defined branches of BALB/C mouse mesenteric arteries which show robust EDHF-mediated smooth muscle relaxation. Cyclopiazonic acid (CPA, 10 µM) was used to stimulate EDHF in arteries mounted under isometric conditions and constricted with phenylephrine. Simultaneous measurement of smooth muscle membrane potential and tension demonstrated that CPA caused a hyperpolarization of around 10 mV, reversing the depolarization to phenylephrine by 94% and the associated constriction by 66%. The relaxation to CPA was endothelium dependent, associated with the opening of Ca2+-activated K channels, and only in part due to the release of nitric oxide (NO). In the presence of the NO synthase inhibitor, L-NAME (100 µM), the relaxation to CPA could be almost completely inhibited with the putative gap junction uncoupler, carbenoxolone (100 µM). Inhibition of the synthesis of prostaglandins or metabolites of arachidonic acid had no effect under the same conditions, and small rises in exogenous K+ failed to evoke consistent or marked smooth muscle relaxation, arguing against a role for these molecules and ions as EDHF. Serial section electron microscopy revealed a high incidence of MEGJs, which was correlated with heterocellular dye coupling. Taken together, these functional and morphological data from a defined mouse resistance artery suggest that the EDHF response in this vessel may be explained by extensive heterocellular coupling through MEGJs, enabling spread of hyperpolarizing current.
The present study was designed to elucidate whether the conduction of vasomotor responses mediated by endothelium-derived hyperpolarizing factor (EDHF) in rat mesenteric arteries is altered during hypertension. Iontophoresed acetylcholine (ACh; 500 ms) caused EDHF-mediated hyperpolarization and vasodilatation at the local site and these responses spread through the endothelium to remote sites in 12-week-old Wistar-Kyoto rats (WKY).
SUMMARY1. Four connexin (Cx) molecules, namely Cx37, Cx40, Cx43 and Cx45, are expressed in the gap junctions that exist within and between the cellular layers of arteries.2. Endothelial cells are well coupled by large gap junctions expressing Cx37, Cx40 and, to a lesser extent, Cx43, whose expression may be more subject to regulation by physical factors.3. Smooth muscle cells are more heterogeneously coupled by gap junctions that are small and rare. The identity of the Cx expressed in the media may vary among different arteries.4. Myoendothelial gap junctions are small and more common in resistance arteries with fewer layers of smooth muscle cells. Given the small size of these gap junctions and the rapid turnover rate of Cxs, homocellular coupling in the media and heterocellular coupling between the cell layers may be subject to more dynamic control than coupling in the endothelium.5. Vascular gap junctions have been implicated in a number of vasomotor responses that may regulate vascular tone and blood pressure. These include the mechanism of action of the vasodilator, endothelium-derived hyperpolarizing factor (EDHF), the myogenic constriction to intramural pressure increase, the spontaneous or agonist-induced vasomotion of arteries and arterioles and the spreading vasodilation and constriction observed in microcirculatory networks.6. Few data are available on Cx expression in the media of resistance arteries during hypertension. Changes in the expression of Cx43 described in the media of the aorta of hypertensive rats vary with the hypertensive model studied and are likely to represent adaptations to structural changes in the vascular wall.7. In contrast, in the endothelium of the caudal and mesenteric arteries of spontaneously hypertensive rats, expression of Cxs is significantly decreased compared with arteries from normotensive rats and this decrease is reversed by inhibitors of the renin-angiotensin system. 8. During hypertension, the activity of EDHF is decreased in the mesenteric artery, but this occurs much later than the initial increase in blood pressure and the decrease in endothelial Cxs, suggesting that changes in EDHF may not be causally related to hypertension or to the changes in endothelial Cxs.9. Upregulation of the myogenic response and the incidence of vasomotion has been reported in hypertension. Little is currently known of the effects of hypertension on spreading vasomotor responses.10. Deletion of specific Cxs in genetically modified mice is complicated by neonatal lethality or coordinate regulation and compensatory changes in the remaining Cxs. Nevertheless, mice in which Cx40 has been deleted are hypertensive and spreading vasodilatory responses are significantly impaired.11. Determination of a role for specific Cxs in the control of blood pressure must await the development of animals in which Cx expression can be modulated in a more complex temporal and tissue-specific manner.
1. Gap junctions, which are comprised of members of a family of membrane proteins called connexins (Cx), permit the transfer of electrical and chemical information between adjacent cells in a wide variety of tissues. The aim of the present study was to compare the expression of Cx37, 40 and 43 in the smooth muscle and endothelium of a large elastic artery and two smaller muscular arteries of the rat. Serial section electron microscopy was also used to determine the presence of pentalaminar gap junctions in the smooth muscle and the incidence of myoendothelial gap junctions between the smooth muscle and endothelial cells in muscular arteries of different size. 2. Using immunohistochemistry, Cx37, 40 and 43 were found in the endothelium of the aorta, caudal and basilar arteries, with Cx43 being the least abundant. Connexin 43 was readily observed throughout the muscle layers of the aorta, but was not detected in the media of the caudal or basilar arteries. Connexin 40 was not detected in the media of any of the arteries, while very fine punctate staining was observed with Cx37 antibodies in the media of the caudal and basilar arteries, but not in the aorta. 3. Real-time polymerase chain reaction showed that the expression of mRNA for Cx43 was 15-fold greater in the aorta than in the caudal artery of the rat. 4. At the ultrastructural level, small pentalaminar gap junctions (< 100 nm) were found between the fine processes of adjacent smooth muscle cells and also between the smooth muscle and endothelial cells. The incidence of myoendothelial gap junctions in the mesenteric vascular bed and in the caudal artery increased as vessel size decreased. 5. In summary, heterogeneity exists within the vascular system with regard to the distribution of gap junctions and their constituent Cx. Such variation will have important consequences for the coordination and propagation of vascular responses. In muscular arteries, in comparison with elastic arteries, Cx37 may be more important than Cx43 for cell coupling within the smooth muscle layers. The correlation between the incidence of myoendothelial gap junctions and the role of endothelium-derived hyperpolarizing factor, relative to nitric oxide, in vasodilatory responses suggests that myoendothelial gap junctions play an important physiological role in the regulation of vascular tone.
A role for myoendothelial gap junctions (MEGJs) has been proposed in the action of the vasodilator endothelium-derived hyperpolarizing factor (EDHF). EDHF activity varies in disease and during ageing, but little is known of the role of EDHF during development when, in many organ systems, gap junctions are up-regulated. The aims of the present study were therefore to determine whether an up-regulation of heterocellular gap junctional coupling occurs during arterial development and whether this change is reflected functionally through an increased action of EDHF. Results demonstrated that in the saphenous artery of juvenile WKY rats, MEGJs were abundant and application of acetylcholine (ACh) evoked EDHF-mediated hyperpolarization and relaxation in the presence of N ω -nitro-L-arginine methyl ester (L-NAME) and indomethacin to inhibit nitric oxide and prostaglandins, respectively. Responses were blocked by a combination of charybdotoxin plus apamin, or 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34) plus apamin, or by blockade of gap junctions with the connexin (Cx)-mimetic peptides,43 Gap26, 40 Gap27 and 37,43 Gap27. On the other hand, we found no evidence for the involvement of the putative chemical mediators of EDHF, eicosanoids, L-NAME-insensitive nitric oxide, hydrogen peroxide or potassium ions, since 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE), hydroxocobalamin, catalase or barium and ouabain were without effect. In contrast, in the adult saphenous artery, MEGJs were rare, EDHF-mediated relaxation was absent and hyperpolarizations were small and unstable. The present study demonstrates that MEGJs and EDHF are up-regulated during arterial development. Furthermore, the data show for the first time that this developmentally regulated EDHF is dependent on direct electrotonic coupling via MEGJs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.