Recent research shows that the effects of oxytocin are more diverse than initially thought and that in some cases oxytocin can directly influence the response to drugs and alcohol. Large individual differences in basal oxytocin levels and reactivity of the oxytocin system exist. This paper will review the literature to explore how individual differences in the oxytocin system arise and examine the hypothesis that this may mediate some of the individual differences in susceptibility to addiction and relapse. Differences in the oxytocin system can be based on individual factors, e.g. genetic variation especially in the oxytocin receptor, age or gender, or be the result of early environmental influences such as social experiences, stress or trauma. The paper addresses the factors that cause individual differences in the oxytocin system and the environmental factors that have been identified to induce long-term changes in the developing oxytocin system during different life phases. Individual differences in the oxytocin system can influence effects of drugs and alcohol directly or indirectly. The oxytocin system has bidirectional interactions with the stress-axis, autonomic nervous system, neurotransmitter systems (e.g. dopamine, serotonin and GABA/glutamate) and the immune system. These systems are all important, even vital, in different phases of addiction. It is suggested that early life adversity can change the development of the oxytocin system and the way it modulates other systems. This in turn could minimise the negative feedback loops that would normally exist. Individuals may show only minor differences in behaviour and function unless subsequent stressors or drug use challenges the system. It is postulated that at that time individual differences in oxytocin levels, reactivity of the system or interactions with other systems can influence general resilience, drug effects and the susceptibility to develop problematic drug and alcohol use.
This preliminary data suggest that the thermal grill response may provide insights into pain sensitivity that are not detected by conventional thermal quantitative sensory testing.
BackgroundPatients with unilateral sciatica have heightened responses to intradermal capsaicin compared to pain-free volunteers. No studies have investigated whether this pain model can screen for novel anti-neuropathic agents in patients with pre-existing neuropathic pain syndromes.AimThis study compared the effects of pregabalin (300 mg) and the tetracycline antibiotic and glial attenuator minocycline (400 mg) on capsaicin-induced spontaneous pain, flare, allodynia and hyperalgesia in patients with unilateral sciatica on both their affected and unaffected leg.Methods/ResultsEighteen patients with unilateral sciatica completed this randomised, double-blind, placebo-controlled, three-way cross-over study. Participants received a 10 µg dose of capsaicin into the middle section of their calf on both their affected and unaffected leg, separated by an interval of 75 min. Capsaicin-induced spontaneous pain, flare, allodynia and hyperalgesia were recorded pre-injection and at 5, 20, 40, 60 and 90 min post-injection. Minocycline tended to reduce pre-capsaicin injection values of hyperalgesia in the affected leg by 28% (95% CI 0% to 56%). The area under the effect time curves for capsaicin-induced spontaneous pain, flare, allodynia and hyperalgesia were not affected by either treatment compared to placebo. Significant limb differences were observed for flare (AUC) (−38% in affected leg, 95% CI for difference −19% to −52%). Both hand dominance and sex were significant covariates of response to capsaicin.ConclusionsIt cannot be concluded that minocycline is unsuitable for further evaluation as an anti-neuropathic pain drug as pregabalin, our positive control, failed to reduce capsaicin-induced neuropathic pain. However, the anti-hyperalgesic effect of minocycline observed pre-capsaicin injection is promising pilot information to support ongoing research into glial-mediated treatments for neuropathic pain. The differences in flare response between limbs may represent a useful biomarker to further investigate neuropathic pain. Inclusion of a positive control is imperative for the assessment of novel therapies for neuropathic pain.
Using the current dosing regimen, ibudilast does not improve headache or reduce opioid use in patients with MOH without mandated opioid withdrawal. However, it would be of interest to determine in future trials if ibudilast is able to improve ease of withdrawal during a forced opioid down-titration when incorporated into an MOH detoxification program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.