We have used temperature-programmed desorption (TPD) experiments to characterize the interaction between D 2 O water and a self-assembled monolayer (SAM) of mixed hydrophobic and hydrophilic thiols on Au(111). Two-component SAM surfaces with tuned hydrophobic and hydrophilic character have been formed by exposing gold samples to solutions of octanethiol and 6-mercaptohexanoic acid in varying millimolar concentrations. Water desorption spectra from the pure hydrophobic surface exhibit first-order desorption at low coverage with the onset of zero-order character at ∼1 Langmuir with narrow peaks at ∼145 K. In contrast, desorption of D 2 O water from the pure carboxylic acid-terminated surface exhibits broad peaks shifted to higher temperatures. Interestingly, water TPD spectra from a 50% octanethiol/50% 6-mercaptohexanoic acid surface closely resemble desorption from the purely hydrophobic octanethiol SAM. Increasing the surface acid fraction beyond 50% shifts the TPD profiles to higher temperatures with long, high-temperature tails that approach the behavior of water desorbing from the hydrophilic 6-mercaptohexanoic acid surface. We discuss the implications for water interaction with "textured" organic surfaces as well as with atmospherically relevant organic aerosol particles. In particular, the results suggest that significant surface oxidation is necessary to impact the interaction of water with organic aerosol surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.