Lipid exchange/transfer has been compared for zwitterionic 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dimyristoyl-d54-sn-glycero-3-phosphocholine (DMPC) small unilamellar vesicles (SUVs) and for the same lipids on silica (SiO2) nanoparticle supported lipid bilayers (NP-SLBs) as a function of ionic strength, temperature, temperature cycling, and NP size, above the main gel-to-liquid crystal phase transition temperature, Tm, using d- and h-DMPC and DPPC. Increasing ionic strength decreases the exchange kinetics for the SUVs, but more so for the NP-SLBs, due to better packing of the lipids and increased attraction between the lipid and support. When the NP-SLBs (or SUVs) are cycled above and below Tm, the exchange rate increases compared with exchange at the same temperature without cycling, for similar total times, suggesting that defects provide sites for more facile removal and thus exchange of lipids. Defects can occur: (i) at the phase boundaries between coexisting gel and fluid phases at Tm; (ii) in bare regions of exposed SiO2 that form during NP-SLB formation due to mismatched surface areas of lipid and NPs; and (iii) during cycling as the result of changes in area of the lipids at Tm and mismatched thermal expansion coefficient between the lipids and SiO2 support. Exchange rates are faster for NP-SLBs prepared with the nominal amount of lipid required to form a NP-SLB compared with NP-SLBs that have been prepared with excess lipids to minimize SiO2 patches. Nanosystems prepared with equimolar mixtures of NP-SLBs composed of d-DMPC (d(DMPC)-NP-SLB) and SUVs composed of h-DMPC (h(DMPC)-SUV) show that the calorimetric transition of the "donor" h(DMPC)-SUV decreases in intensity without an initial shift in Tm, indicating that the "acceptor" d(DMPC)-NP-SLB can accommodate more lipids, through either further fusion or insertion of lipids into the distal monolayer. Exchange for d/h(DMPC)-NP-SLB is in the order 100 nm SiO2 > 45 nm SiO2 > 5 nm SiO2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.