The implications of climate change for biological invasions are multifaceted and vary along the invasion process. Changes in vectors and pathways are likely to manifest in changes in transport routes and destinations, together with altered transit times and traffic volume. Ultimately, changes in the nature of why, how, and where biota are transported and introduced will pose biosecurity challenges. These challenges will require increased human and institutional capacity, as well as proactive responses such as improved early detection, adaptation of present protocols and innovative legal instruments. Invasion success and spread are expected to be moderated by the physiological response of alien and native biota to environmental changes and the ensuing changes in biotic interactions. These in turn will likely affect management actions aimed at eradicating, containing, and mitigating invasions, necessitating an adaptive approach to management that is sensitive to potentially unanticipated outcomes.
Changing ocean temperatures are predicted to challenge marine organisms, especially when combined with other factors, such as ocean acidification. Acclimation, as a form of phenotypic plasticity, can however, moderate the consequences of changing environments for biota. Our understanding of how altered temperature and acidification together influence species acclimation responses is, however, limited compared to responses to single stressors. This study investigated how temperature and acidification affected the thermal tolerance and righting speed of the Girdled Dogwhelk, Trochia cingulata (Linnaeus, 1771). Whelks were acclimated for two weeks to combinations of three temperatures (11°C: cold, 13°C: moderate and 15°C: warm) and two pH regimes (8.0: moderate and 7.5: acidic). We measured the temperature sensitivity of righting response by generating thermal performance curves from individual data collected at seven test temperatures and determined critical thermal minima (CTmin) and maxima (CTmax). We found that T. cingulata has a broad basal thermal tolerance range (∼38°C) and after acclimation to the warm temperature regime, both the optimal temperature for maximum righting speed and CTmax increased. Contrary to predictions, acidification did not narrow this population's thermal tolerance but increased CTmax. These plastic responses are likely driven by the predictable exposure to temperature extremes measured in the field which originate from the local tidal cycle and the periodic acidification associated with ocean upwelling in the region. This acclimation ability suggests that T. cingulata has at least some capacity to buffer the thermal changes and increased acidification predicted to occur with climate change.
From 1989 to 1998, the artist Sadie Benning created nine video artworks using a Fisher-Price PXL-2000 camera, which records to audiocassette. The resulting video format is known as Pixelvision. This essay, written by video archivists, reviews the history of these works through the lens of audiovisual media preservation, and emerges from research and a series of interviews with the artist and other stakeholders. It aims to create a foundation for a collection assessment of Benning’s early video works, and explores the feasibility of preserving them. With this in mind, the essay traces the creative and technical processes involved in the production, exhibition, conservation, and distribution of such precarious media works, and discusses the innovative, ephemeral, and ultimately vulnerable media created by the PXL-2000 camcorder. This is a study of the fleeting nature of media technology, personal and social histories, and the meaning contained in audiovisual works of art.
Despite the existing body of research that considers altered ocean temperature and acidification as co-occurring stressors, our understanding of the consequences of such shifts remains limited. This is particularly problematic in relation to predators such as whelks, as they can exert strong top-down control of communities yet, as calcifying ectotherms, they are likely to be vulnerable to climate change. This study assessed the effects of simultaneous changes in water temperature and pH on the South African girdled dogwhelk Trochia cingulata. For 12 weeks, whelks were exposed to three temperatures, 9 °C (cooling), 13 °C (current) and 17 °C (warming), each at three target pH levels, 8.0 (current), 7.7 (intermediate) and 7.5 (extreme). For each treatment shell thickness, strength and shape were measured after 6 and 12 weeks, while mortality was recorded daily. Survival was not affected by pH and was highest at 9 °C. Almost all whelks exposed to warming died within 2 weeks. After 6 weeks, shell strength declined significantly as acidity increased, regardless of temperature, and shells of whelks held at 9 °C were thinner. By 12 weeks, whelks exposed to cooling and extreme pH had the weakest shells. Notably, temperature no longer influenced shell thickness, but whelks held at 9 °C became globular in shape. These changes in shell morphology likely resulted from the increased cost of shell maintenance in cool, acidic conditions. The differences observed at 6 and 12 weeks demonstrate how responses can change over time, a point that should be kept in mind when assessing species sensitivities to changing environments. The dominant effect of temperature highlights that T. cingulata is particularly vulnerable to warming, while regional cooling may pose a challenge with respect to shell morphology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.