Nanoconjugates composed of TiO 2 nanoparticles, DNA oligonucleotides and a gadolinium contrast agent were synthesized for use in magnetic resonance imaging. Transfection of cultured cancer cells with these nanoconjugates showed them to be superior to the free contrast agent of same formulation with regard to 1) intracellular accumulation, 2) retention and 3) subcellular localization. Our results have shown that 48 hours after treatment, the concentration of gadolinium in nanoconjugate treated cells was 1000 fold higher compared to cells treated with contrast agent alone. Consequently, T 1 -weighted contrast enhancements were observed in cells treated with nanoconjugates but not in cells treated by the contrast agent alone. This type of nanoconjugate with increased retention time, Gd accumulation and intracellular delivery may find its use in gadolinium neutron-capture cancer therapy.
The objectives of this study were to investigate the feasibility of imaging green fluorescent protein (GFP)-expressing cells labeled with iron oxide nanoparticles with the fast low-angle positive contrast steady-state free precession (FLAPS) method and to compare them with the traditional negative contrast technique. The GFP-R3230Ac cell line (GFP cell) was incubated for 24 hours using 20 microg Fe/mL concentration of superparamagnetic iron oxide (SPIO) and ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. Cell samples were prepared for iron content analysis and cell function evaluation. The labeled cells were imaged using positive contrast with FLAPS imaging, and FLAPS images were compared with negative contrast T2*-weighted images. The results demonstrated that SPIO and USPIO labeling of GFP cells had no effect on cell function or GFP expression. Labeled cells were successfully imaged with both positive and negative contrast magnetic resonance imaging (MRI). The labeled cells were observed as a narrow band of signal enhancement surrounding signal voids in FLAPS images and were visible as signal voids in T2*-weighted images. Positive contrast and negative contrast imaging were both valuable for visualizing labeled GFP cells. MRI of labeled cells with GFP expression holds potential promise for monitoring the temporal and spatial migration of gene markers and cells, thereby enhancing the understanding of cell- and gene-based therapeutic strategies.
There is rapidly increasing interest in the use of magnetic resonance imaging (MRI) to track cell migration in vivo. Iron oxide MR contrast agents can be detected at micromolar concentrations of iron, and offer sufficient sensitivity for T2*-weighted imaging. Cellular MRI shows potential for assessing aspects of cardiovascular disease. Labeling in vivo and tracking macrophages using iron oxide nanoparticles has been a goal for cellular MRI because macrophages play a pivotal role in the pathophysiology of many human diseases, including atherosclerosis. Cellular MRI has also been using to track transplanted therapeutic cells in myocardial regeneration. This review looked at iron oxide nanoparticles, methods of cell labeling, image acquisition techniques and limitations encountered for visualization. Particular attention was paid to stem cells and macrophages for the cardiovascular system.
Background-Detection of a gene using magnetic resonance imaging (MRI) is hindered by the magnetic resonance (MR) targeting gene technique. Therefore it may be advantageous to image geneexpressing cells labeled with superparamagnetic iron oxide (SPIO) nanoparticles by MRI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.