The role of environment as a selective agent is well-established. Environment might also influence evolution by altering the expression of genetic variation associated with phenotypes under selection. Far less is known about this phenomenon, particularly its contribution to evolution in novel environments. We investigated how environment affected the evolvability of body size in the threespine stickleback (Gasterosteus aculeatus). Gasterosteus aculeatus is well suited to addressing this question due to the rapid evolution of smaller size in the numerous freshwater populations established following the colonization of new freshwater habitats by an oceanic ancestor. The repeated, rapid evolution of size following colonization contrasts with the general observation of low phenotypic variation in oceanic stickleback. We reared an oceanic population of stickleback under high and low salinity conditions, mimicking a key component of the ancestral environment, and freshwater colonization, respectively. There was low genetic variation for body size under high salinity, but this variance increased significantly when fish were reared under low salinity. We therefore conclude that oceanic populations harbor the standing genetic variation necessary for the evolution of body size, but that this variation only becomes available to selection upon colonization of a new habitat.
Parasitic interactions are often part of complex networks of interspecific relationships that have evolved in biological communities. Despite many years of work on the evolution of parasitism, the likelihood that sister taxa of parasites can co-evolve with their hosts to specifically infect two related lineages, even when those hosts occur sympatrically, is still unclear. Furthermore, when these specific interactions occur, the molecular and physiological basis of this specificity is still largely unknown. The presence of these specific parasitic relationships can now be tested using molecular markers such as DNA sequence variation. Here we test for specific parasitic relationships in an emerging host-parasite model, the stickleback-Schistocephalus system. Threespine and ninespine stickleback fish are intermediate hosts for Schistocephalus cestode parasites that are phenotypically very similar and have nearly identical life cycles through plankton, stickleback, and avian hosts. We analyzed over 2000 base pairs of COX1 and NADH1 mitochondrial DNA sequences in 48 Schistocephalus individuals collected from threespine and ninespine stickleback hosts from disparate geographic regions distributed across the Northern Hemisphere. Our data strongly support the presence of two distinct clades of Schistocephalus, each of which exclusively infects either threespine or ninespine stickleback. These clades most likely represent different species that diverged soon after the speciation of their stickleback hosts. In addition, genetic structuring exists among Schistocephalus taken from threespine stickleback hosts from Alaska, Oregon and Wales, although it is much less than the divergence between hosts. Our findings emphasize that biological communities may be even more complex than they first appear, and beg the question of what are the ecological, physiological, and genetic factors that maintain the specificity of the Schistocephalus parasites and their stickleback hosts.
The common pattern of replicated evolution of a consistent shape-environment relationship might reflect selection acting in similar ways within each environment, but divergently among environments. However, phenotypic evolution depends on the availability of additive genetic variation as well as on the direction of selection, implicating a bias in the distribution of genetic variance as a potential contributor to replicated evolution. Allometry, the relationship between shape and size, is a potential source of genetic bias that is poorly understood. The threespine stickleback, Gasterosteus aculeatus, provides an ideal system for exploring the contribution of genetic variance in body shape allometry to evolutionary patterns. The stickleback system comprises marine populations that exhibit limited phenotypic variation, and young freshwater populations which, following independent colonization events, have often evolved similar phenotypes in similar environments. In particular, stickleback diversification has involved changes in both total body size and relative size of body regions (i.e., shape). In a laboratory-reared cohort derived from an oceanic Alaskan population that is phenotypically and genetically representative of the ancestor of the diverse freshwater populations in this region, we determined the phenotypic static allometry, and estimated the additive genetic variation about these population-level allometric functions. We detected significant allometry, with larger fish having relatively smaller heads, a longer base to their second dorsal fin, and longer, shallower caudal peduncles. There was additive genetic variance in body size and in size-independent body shape (i.e., allometric elevation), but typically not in allometric slopes. These results suggest that the parallel evolution of body shape in threespine stickleback is not likely to have been a correlated response to selection on body size, or vice versa. Although allometry is common in fishes, this study highlights the need for additional data on genetic variation in allometric functions to determine how allometry evolves and how it influences phenotypic evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.