Embryonic stem (ES) cells hold great promise for the future of medicine. To elucidate the molecular mechanisms that control ES cell self-renewal and differentiation, a comprehensive knowledge of the molecules involved in these processes is required. Here we describe an effective approach for genomewide identification of functionally active genes in ES cells. This approach combines genetic screens based on cDNA libraries with microarray detection methods to permit high-throughput functional analyses. We implement this strategy to identify genes whose overexpression can maintain phenotypic properties of undifferentiated mouse ES cells under differentiation-inducing conditions, specifically in the absence of leukemia inhibitory factor. The identified genes encode a variety of regulatory proteins whose function in ES cells was previously unknown. Moreover, our approach is capable of detecting genes whose overexpression promote differentiation or cell death. Overall, our studies establish a methodology for highly sensitive identification of genes that confer particular phenotypes on ES cells.cDNA library ͉ differentiation ͉ microarray ͉ phenotype ͉ self-renewal
IL12RB1 is essential for human resistance to multiple intracellular pathogens, including Mycobacterium tuberculosis. In its absence, the proinflammatory effects of the extracellular cytokines IL-12 and IL-23 fail to occur, and intracellular bacterial growth goes unchecked. Given the recent observation that mouse leukocytes express more than one isoform from il12rb1, we examined whether primary human leukocytes similarly express more than one isoform from IL12RB1. We observed that human leukocytes express as many as 13 distinct isoforms, the relative levels of each being driven by inflammatory stimuli both in vitro and in vivo. Surprisingly, the most abundant isoform present before stimulation is a heretofore uncharacterized intracellular form of the IL-12R (termed “isoform 2”) that presumably has limited contact with extracellular cytokine. After stimulation, primary PBMCs, including the CD4+, CD8+, and CD56+ lineages contained therein, alter the splicing of IL12RB1 RNA to increase the relative abundance of isoform 1, which confers IL-12/IL-23 responsiveness. These data demonstrate both a posttranscriptional mechanism by which cells regulate their IL-12/IL-23 responsiveness, and that leukocytes primarily express IL12RB1 in an intracellular form located away from extracellular cytokine.
The diatom Thalassiosira pseudonana was genetically modified to express biosilica-targeted fusion proteins comprising either enhanced green fluorescent protein (EGFP) or single chain antibodies engineered with a tetracysteine tagging sequence. Of interest were the site-specific binding of (1) the fluorescent biarsenical probe AsCy3 and AsCy3e to the tetracysteine tagged fusion proteins and (2) high and low molecular mass antigens, the Bacillus anthracis surface layer protein EA1 or small molecule explosive trinitrotoluene (TNT), to biosilica-immobilized single chain antibodies. Analysis of biarsenical probe binding using fluorescence and structured illumination microscopy indicated differential colocalization with EGFP in nascent and mature biosilica, supporting the use of either EGFP or bound AsCy3 and AsCy3e in studying biosilica maturation. Large increases in the lifetime of a fluorescent analogue of TNT upon binding single chain antibodies provided a robust signal capable of discriminating binding to immobilized antibodies in the transformed frustule from nonspecific binding to the biosilica matrix. In conclusion, our results demonstrate an ability to engineer diatoms to create antibody-functionalized mesoporous silica able to selectively bind chemical and biological agents for the development of sensing platforms.
A selective and label-free biosensor for detection of the explosive compound 2,4,6-trinitrotoluene (TNT) in aqueous solution was developed based on the principle of photoluminescence quenching of upon immunocomplex formation with antibody-functionalized diatom frustule biosilica. The diatom frustule is an intricately nanostructured, highly porous biogenic silica material derived from the shells of microscopic algae called diatoms. This material emits strong visible blue photoluminescence (PL) upon UV excitation. PL-active frustule biosilica was isolated from cultured cells of the marine diatom Pinnularia sp. and functionalized with a single chain variable fragment (scFv) derived from an anti-TNT monoclonal antibody. When TNT was bound to the anti-TNT scFv-functionalized diatom frustule biosilica, the PL emission from the biosilica was partially quenched due to the electrophilic nature of the nitro (-NO2) groups on the TNT molecule. The dose-response curve for immunocomplex formation of TNT on the scFv-functionalized diatom frustule biosilica had a half-saturation binding constant of 6.4 ± 2.4·10(-8)M and statistically-significant measured detection limit of 3.5·10(-8)M. The binding and detection were selective for TNT and TNB (trinitrobenzene) but not RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) or 2,6-DNT (2,6-dinitrotoluene).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.