BackgroundMost of the modeling performed in the area of systems biology aims at achieving a quantitative description of the intracellular pathways within a "typical cell". However, in many biologically important situations even clonal cell populations can show a heterogeneous response. These situations require study of cell-to-cell variability and the development of models for heterogeneous cell populations.ResultsIn this paper we consider cell populations in which the dynamics of every single cell is captured by a parameter dependent differential equation. Differences among cells are modeled by differences in parameters which are subject to a probability density. A novel Bayesian approach is presented to infer this probability density from population snapshot data, such as flow cytometric analysis, which do not provide single cell time series data. The presented approach can deal with sparse and noisy measurement data. Furthermore, it is appealing from an application point of view as in contrast to other methods the uncertainty of the resulting parameter distribution can directly be assessed.ConclusionsThe proposed method is evaluated using artificial experimental data from a model of the tumor necrosis factor signaling network. We demonstrate that the methods are computationally efficient and yield good estimation result even for sparse data sets.
The spindle assembly checkpoint is a conserved signalling pathway that protects genome integrity. Given its central importance, this checkpoint should withstand stochastic fluctuations and environmental perturbations, but the extent of and mechanisms underlying its robustness remain unknown. We probed spindle assembly checkpoint signalling by modulating checkpoint protein abundance and nutrient conditions in fission yeast. For core checkpoint proteins, a mere 20% reduction can suffice to impair signalling, revealing a surprising fragility. Quantification of protein abundance in single cells showed little variability (noise) of critical proteins, explaining why the checkpoint normally functions reliably. Checkpoint-mediated stoichiometric inhibition of the anaphase activator Cdc20 (Slp1 in Schizosaccharomyces pombe) can account for the tolerance towards small fluctuations in protein abundance and explains our observation that some perturbations lead to non-genetic variation in the checkpoint response. Our work highlights low gene expression noise as an important determinant of reliable checkpoint signalling.
DNA methylation maintenance by DNMT1 is an essential process in mammals but molecular mechanisms connecting DNA methylation patterns and enzyme activity remain elusive. Here, we systematically analyzed the specificity of DNMT1, revealing a pronounced influence of the DNA sequences flanking the target CpG site on DNMT1 activity. We determined DNMT1 structures in complex with preferred DNA substrates revealing that DNMT1 employs flanking sequence-dependent base flipping mechanisms, with large structural rearrangements of the DNA correlating with low catalytic activity. Moreover, flanking sequences influence the conformational dynamics of the active site and cofactor binding pocket. Importantly, we show that the flanking sequence preferences of DNMT1 highly correlate with genomic methylation in human and mouse cells, and 5-azacytidine triggered DNA demethylation is more pronounced at CpG sites with flanks disfavored by DNMT1. Overall, our findings uncover the intricate interplay between CpG-flanking sequence, DNMT1-mediated base flipping and the dynamic landscape of DNA methylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.