The separation of two different sized particles during evaporation of a dilute droplet is examined both computationally and experimentally. A transport model of the evaporating droplet system was solved using the finite element method to determine the fluid velocity, pressure, vapor concentration surrounding the droplet, temperature, and both particle concentrations. Experimentally, 1 lm and 3 lm polystyrene particles were used during the evaporation of a sessile water droplet. It was determined that to accurately model particle deposition, thermal effects need to be considered. The Marangoni currents in evaporating droplets keep particles suspended in the droplet until the end of the evaporation. Previous models of particle deposition during droplet evaporation have rapid accumulation of particles at the contact line. Our experiments and the experiments of others demonstrate that this is not accurate physically. In addition, to model the separation of two different sized particles the consideration of thermal effects is essential.
As a droplet with particles evaporates, the particles deposit on the substrate surface. In this work, we show the extent of gravitational effects on the particle deposition profile and propose a new model for particle tracing in an evaporating droplet which accounts for gravitational effects. Experimentally, we compare pendant and sessile water droplets with 1 and 3 μm polystyrene particles. Numerically, the finite element method was used to create a transport model of the evaporating droplet system and particle deposition. The numerical and experimental results have excellent agreement and show that a pendant water droplet with 1 and 3 μm polystyrene spheres has significant separation of the two particle sizes. Finally, a phase diagaram was created to map different deposition profiles for various gravitational Péclet numbers (PeG) and ratios of Péclet number to Damköhler number (Pe/Da). © 2015 American Institute of Chemical Engineers AIChE J, 62: 947–955, 2016
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.