Drought is expected to become an increasingly important factor limiting tree growth caused by climate change. Two divergent clones of Populus nigra (58-861 and Poli) originating from contrasting environments were subjected to water limitation (WL) to elucidate whether they differ in tolerance to drought, which mechanisms to avoid stress they exhibit and whether drought has an impact on the interactions between roots and shoots. Limiting water availability caused photosynthetic rate and total non-structural carbohydrate (TNC) levels to decrease in 58-861. However, starch-degrading enzyme activity and gene expression were induced in roots, and soluble sugar levels were higher than in well-watered (WW) plants. These data suggest that assimilation and partitioning of carbon to the roots are decreased, resulting in mobilization of stored starch. In contrast, the photosynthetic rate of Poli was reduced only late in the treatment, and carbohydrate levels in WL plants were higher than in WW plants. Superoxide dismutase (SOD) activity and gene expression were higher in Poli than in 58-861, even in WW plants, leading to a higher capacity to defend against oxidative stress.
Trees need to store reserves to allow their survival during winter and for bud flush and leaf growth in the following spring. In many tree species, these reserve functions are mainly covered by starch, which is degraded to soluble carbohydrates during the dormant season for maintenance respiration and in spring during bud flush. We conducted girdling experiments on poplar (Populus deltoides x nigra cv. Dorskamp) in order to elucidate how interrupted transport of carbohydrates to the roots during autumn affects plant survival during winter and bud flush in spring. We measured the content of starch, sucrose, glucose, fructose, raffinose and stachyose in stems (above and below the girdle), coarse roots and fine roots over 1 year. We found that, in response to girdling, carbohydrates accumulated in stems above the girdle. As a result of interrupted reserve allocation, girdled plants depleted their root starch reserves nearly to zero, whereas in stems below the girdle, reserves were maintained close to control values, presumably in order to facilitate dormancy release and re-sprouting from buds below the girdle. Furthermore, we showed that stachyose accumulated during winter also in the roots, even in girdled plants, consistent with its importance as freezing protectant. The lower stachyose content of roots compared with shoots was likely due to protection of the roots from cold by the soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.