Dust is the major source of iron in atmospheric aerosols but little is known about its role in catalyzing polymerization reactions of organics in particles. Using Arizona Test Dust (AZTD) and hematite nanoparticles as laboratory standards and proxies for hematite-rich natural dust, respectively, we show that their reactions with catechol in aqueous slurries lead to the formation of black polycatechol. This observation is in contrast to oxalate and sulfate which form surface complexes promoting the dissolution of iron from the dust particles. Results from ultraviolet–visible spectroscopy and microscopy/elemental mapping show that the formation of polycatechol changed the optical properties of the dust particles and surface chemical composition. Results from ice nucleation studies using a droplet freezing technique show that polycatechol did not significantly impact ice nucleation or block ice nucleation sites on AZTD. In contrast, increasing pH decreased the ice nucleation ability of AZTD. These results highlight the complexity of iron’s role in aerosol aging processes, brown carbon formation, and ice nucleation.
Mineral dust particles can initiate the freezing of cloud droplets in the atmosphere. The freezing efficiency of these particles can, however, be strongly affected by solutes, such as inorganic acids, polyols, and carboxylic acids. Here, we report the effects of inorganic acids (HNO 3 and HCl), polyols, and carboxylic acids at low concentrations on the ice nucleating ability of potassium-rich feldspar (K-rich feldspar) using the droplet freezing technique. The inorganic acids and carboxylic acids decreased the median freezing temperature of droplets containing K-rich feldspar by up to 7 °C, while the polyols had no significant effect on the median freezing temperature. For the inorganic acids and carboxylic acids, the median freezing temperature was a strong function of the pH of the droplets, with the median freezing temperature decreasing as the pH decreased. By examining the surface properties of K-rich feldspar exposed to different concentrations of HCl with cryogenic X-ray photoelectron spectroscopy, we show that the decrease in the ice nucleating ability of Krich feldspar by the inorganic acids and carboxylic acids was likely caused by ion exchange (H 3 O + with parent K + in microcline) and the incongruent dissolution of Al with respect to Si at K-rich feldspar surfaces. The decrease in the ice nucleating ability of K-rich feldspar by the carboxylic acids only related to the pH of the droplets rather than the type of carboxylic acid and their expected binding mechanisms on K-rich feldspar. This study focuses on rare ice nucleating active sites (with an ice nucleating active site density of 10−600 cm −2 ) of the K-rich feldspar and short exposure times between the solutes and the K-rich feldspar. Further studies are needed to investigate more abundant ice nucleating active sites and longer exposure times, as well as K-rich feldspar samples from different sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.