ABSTRACT. Amphibians are the most threatened vertebrate group according to the IUCN. Land-use and land cover change (LULCC) and climate change (CC) are two of the main factors related to declining amphibian populations. Given the vulnerability of threatened and rare species, the study of their response to these impacts is a conservation priority. The aim of this work was to analyze the combined impact of LULCC and CC on the regionally endemic species Melanophryniscus sanmartini Klappenbach, 1968. This species is currently categorized as near threatened by the IUCN, and previous studies suggest negative effects of projected changes in climate. Using maximum entropy methods we modeled the effects of CC on the current and mid-century distribution of M. sanmartini under two IPCC scenarios -A2 (severe) and B2 (moderate). The effects of LULCC were studied by superimposing the potential distribution with current land use, while future distribution models were evaluated under the scenario of maximum expansion of soybean and afforestation in Uruguay. The results suggest that M. sanmartini is distributed in eastern Uruguay and the south of Brazil, mainly related to hilly and grasslands systems. Currently more than 10% of this species' distribution is superimposed by agricultural crops and exotic forest plantations. Contrasting with a recent modelling study our models suggest an expansion of the distribution of M. sanmartini by mid-century under both climate scenarios. However, despite the rise in climatically suitable areas for the species in the future, LULCC projections indicate that the proportion of modified habitats will occupy up to 25% of the distribution of M. sanmartini. Future change in climate conditions could represent an opportunity for M. sanmartini, but management measures are needed to mitigate the effects of habitat modification in order to ensure its survival and allow the eventual expansion of its distribution.KEYWORDS. Species distribution modeling, global change, conservation, threatened species. RESUMEN. Efectos de los cambios climáticos y del uso de la tierra en la distribución de un endemismo regional: Melanophryniscus sanmartini (Amphibia, Bufonidae). Los anfibios son el grupo de vertebrados más amenazado en la actualidad según la UICN. El cambio en el uso y cobertura del suelo (CUCS) y el cambio climático (CC) son dos de los principales factores involucrados en el fenómeno de declinación de anfibios. Por lo tanto, investigar sus impactos sobre especies amenazadas o raras es fundamental dado que su vulnerabilidad las convierte en prioridades de conservación. El objetivo de este trabajo fue evaluar conjuntamente el impacto potencial del CUCS y del CC sobre la distribución del endemismo regional Melanophryniscus sanmartini Klappenbach, 1968. Esta especie está categorizada como casi amenazada por UICN y estudios anteriores sugieren efectos negativos del CC en su distribución. Utilizando modelos de máxima entropía modelamos la distribución actual y futura (2050) de M. sanmartini, bajo dos escenarios d...
Critical nodes play a major role in network connectivity. Identifying them is important to design efficient strategies to prevent malware or epidemics spread through a network. In this context, the Stochastic Weighted Graph Fragmentation Problem (SWGFP) is a combinatorial optimization problem that belongs to the N P − Complete class. Its objective consists in minimizing the impact of a random attack on a singleton, choosing appropiately a set of nodes to immunize given a restricted budget. In the SWGFP, it is assumed that the attack follows a known probability law and that it affects the whole connected component of the attacked node. In this thesis, a GRASP enriched with Path Relinking algorithm is developed to solve the SWGFP. Its performance is studied under three attack scenarios and compared with a GRASP variant that was previously developed in literature and with a Random heuristic for the problem that picks a set of nodes uniformly at random. Computational experiments show that the algorithm based on Independent Sets which is developed in this thesis, outperforms the other two, with lower expected loss scores and higher robustness.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.