Quantitative retinal vascular perfusion density mapping agreed closely with grading based on clinical features and may offer an objective method for monitoring disease progression in diabetic retinopathy.
Given the complexity of the current system used to stage diabetic retinopathy (DR) and the risks and limitations associated with intravenous fluorescein angiography (IVFA), noninvasive quantification of DR severity is desirable. We examined the utility of acircularity index and axis ratio of the foveal avascular zone (FAZ), metrics that can noninvasively quantify the severity of diabetic retinopathy without the need for axial length to correct for individual retinal magnification. A retrospective review was performed of type 2 diabetics and age-matched controls imaged with optical coherence tomography angiography (OCTA). Diabetic eyes were divided into three groups according to clinical features: No clinically observable diabetic retinopathy (NoDR), nonproliferative diabetic retinopathy (NPDR), and proliferative diabetic retinopathy (PDR). OCTAs of the superficial and deep vascular layers centered at the fovea were superimposed to form a full vascular layer on which the FAZ was manually traced. Acircularity index and axis ratio were calculated for each FAZ. Significant differences in acircularity index were observed between all groups except for controls vs. NoDR. Similar results were found for axis ratio, although there was no significant difference observed between NPDR and PDR. We demonstrate that acircularity index and axis ratio can be used to help noninvasively stage DR using OCTA, and show promise as methods to monitor disease progression and detect response to treatment.
Optical coherence tomography angiography can uniquely identify changes in peripapillary PCD in glaucoma patients. Optical coherence tomography angiography may offer insights into the pathophysiology of glaucomatous damage and risk factors for disease progression.
Lutein, zeaxanthin, and meso-zeaxanthin are xanthophyll carotenoids found within the retina and throughout the visual system. The retina is one of the most metabolically active tissues in the body. The highest concentration of xanthophylls is found within the retina, and this selective presence has generated many theories regarding their role in supporting retinal function. Subsequently, the effect of xanthophylls in the prevention and treatment of various eye diseases has been examined through epidemiological studies, animal studies, and clinical trials. This paper attempts to review the epidemiological studies and clinical trials investigating the effects of xanthophylls on the incidence and progression of various eye diseases. Observational studies have reported that increased dietary intake and higher serum levels of lutein and zeaxanthin are associated with lower risk of age-related macular degeneration (AMD), especially late AMD. Randomized, placebo-controlled clinical trials have demonstrated that xanthophyll supplementation increases macular pigment levels, improves visual function, and decreases the risk of progression to late AMD, especially neovascular AMD. Current publications on the preventive and therapeutic effects of lutein and zeaxanthin on cataracts, diabetic retinopathy, and retinopathy of prematurity have reported encouraging results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.