AbstractIntegration of biological control with other management tactics such as prescribed burning is often important for successful invasive weed control. A critical step in this integration is determining whether the agent can colonize postburn growth of the weed. Here, we investigated postburn colonization by biological control agents on regrowth of the invasive vine Lygodium microphyllum (Cav.) R. Br. (Lygodiaceae, Old World climbing fern) in Florida. We monitored regrowth and subsequent colonization of two agents already established in Florida—the gall-inducing mite Floracarus perrepae Knihinicki and Boczek (Acariformes: Eriophyidae) and the foliage-feeding moth Neomusotima conspurcatalis Warren (Lepidoptera: Crambidae)—following three prescribed burns. We provide the first report of natural colonization by the F. perrepae mite and N. conspurcatalis moth on postburn L. microphyllum regrowth, and this colonization typically began 5–9 mo postburn. Furthermore, we report that L. microphyllum can recover to prefire levels of percent cover in as little as 5 mo. Our findings indicate that biological control of L. microphyllum has the potential to be integrated with prescribed burns.
Horticulture is a major pathway of introduction of aquatic plants. Among traded aquatic plants, we found two species belonging to the genus Lagarosiphon Harv. (Hydrocharitaceae), native to South and Central Africa, L. major (Ridl.) Moss and L. cordofanus Casp. L. major is the main representative of the genus, having already been introduced via horticulture sale beyond its native range, and often becoming invasive. In contrast, L. cordofanus is a lesser-known congener that could be potentially sold as an alternative to L. major. It is relatively understudied, and has yet to be recorded in the wild outside its native range. Many factors can promote the invasiveness of an alien plant; among them, increased nutrient availability often facilitates opportunistic alien species such as L. major. In a horizon-scanning perspective, a manipulative experiment under controlled conditions was performed to test the response of L. cordofanus to different trophy levels using L. major as the tolerant alternative species. According to our results, the naturalization of L. cordofanus in temperate shallow waters does not seem likely, especially if considered in comparison to L. major.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.