Consumers and regulations encourage the use of naturally derived food colorants. Anthocyanins (ACN), plant pigments, are unstable in foods. In aged red wines, ACN with a free hydroxyl group at C-5 condenses to form pyranoanthocyanins (PACN), which are more stable but form inefficiently. This study attempted to produce PACN efficiently using high cofactor concentration and heat. Elderberry anthocyanins were semi-purified and caffeic acid (CA) was dissolved in 15% ethanol and diluted with a buffer to achieve ACN:CA molar ratios of 1:50, 1:100, 1:150, and 1:200, then incubated at 65 °C for 5 days. The effect of temperature was tested using ACN samples incubated with or without CA at 25 °C, 50 °C, and 75 °C for 7 days. Compositional changes were monitored using uHPLC-PDA-MS/MS. Higher CA levels seemed to protect pigment integrity, with ACN:CA 1:150 ratio showing the highest tinctorial strength after 48 h. PACN content growth was fastest between 24 and 48 h for all ACN:CA ratios and after 120 h, all ACN had degraded or converted to PACN. PACN formed faster at higher temperatures, reaching ~90% PACN in 24 h and ~100% PACN in 48 h at 75 °C. These results suggest that PACN can form efficiently from elderberry ACN and CA if heated to produce more stable pigments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.