Tumors contain a small population of cancer stem cells (CSC) proposed to be responsible for tumor maintenance and relapse. Aldehyde dehydrogenase 1 (ALDH1) activity has been used as a functional stem cell marker to isolate CSCs in different cancer types. This study used the Aldefluor® assay and fluorescence-activated cell sorting (FACS) analysis to isolate ALDH1high cells from five human sarcoma cell lines and one primary chordoma cell line. ALDH1high cells range from 0.3% (MUG-Chor1) to 4.1% (SW-1353) of gated cells. Immunohistochemical staining, analysis of the clone formation efficiency, and xCELLigence microelectronic sensor technology revealed that ALDH1high cells from all sarcoma cell lines have an increased proliferation rate compared to ALDH1low cells. By investigating of important regulators of stem cell biology, real-time RT-PCR data showed an increased expression of c-Myc, β-catenin, and SOX-2 in the ALDH1high population and a significant higher level of ABCG2. Statistical analysis of data demonstrated that ALDH1high cells of SW-982 and SW-1353 showed higher resistance to commonly used chemotherapeutic agents like doxorubicin, epirubicin, and cisplatin than ALDH1low cells. This study demonstrates that in different sarcoma cell lines, high ALDH1 activity can be used to identify a subpopulation of cells characterized by a significantly higher proliferation rate, increased colony forming, increased expression of ABC transporter genes and stemness markers compared to control cells. In addition, enhanced drug resistance was demonstrated.
We evaluated the effects of mechanical stimulation on the osteogenic differentiation of human intraoral mesenchymal stem and progenitor cells (MSPCs) using the Flexcell FX5K Tension System that mediated cyclic tensile stretch on the cells. MSPCs were isolated from human mandibular retromolar bones and characterized using flow cytometry. The positive expression of CD73, CD90, and CD105 and negativity for CD14, CD19, CD34, CD45, and HLA-DR confirmed the MSPC phenotype. Mean MSPC doubling time was 30.4 ± 2.1 hrs. The percentage of lactate dehydrogenase (LDH) release showed no significant difference between the mechanically stimulated groups and the unstimulated controls. Reverse transcription quantitative real-time PCR revealed that 10% continuous cyclic strain (0.5 Hz) for 7 and 14 days induced a significant increase in the mRNA expression of the osteogenesis-specific markers type-I collagen (Col1A1), osteonectin (SPARC), bone morphogenetic protein 2 (BMP2), osteopontin (SPP1), and osteocalcin (BGLAP) in osteogenic differentiated MSPCs. Furthermore, mechanically stimulated groups produced significantly higher amounts of calcium deposited into the cultures and alkaline phosphatase (ALP). These results will contribute to a better understanding of strain-induced bone remodelling and will form the basis for the correct choice of applied force in oral and maxillofacial surgery.
Human soft tissue sarcomas represent a rare group of malignant tumours that frequently exhibit chemotherapeutic resistance and increased metastatic potential following unsuccessful treatment. In this study, we investigated the effects of costunolide and dehydrocostus lactone, which have been isolated from Saussurea lappa using activity-guided isolation, on three soft tissue sarcoma cell lines of various origins. The effects on cell proliferation, cell cycle distribution, apoptosis induction, and ABC transporter expression were analysed. Both compounds inhibited cell viability dose- and time-dependently. IC50 values ranged from 6.2 µg/mL to 9.8 µg/mL. Cells treated with costunolide showed no changes in cell cycle, little in caspase 3/7 activity, and low levels of cleaved caspase-3 after 24 and 48 h. Dehydrocostus lactone caused a significant reduction of cells in the G1 phase and an increase of cells in the S and G2/M phase. Moreover, it led to enhanced caspase 3/7 activity, cleaved caspase-3, and cleaved PARP indicating apoptosis induction. In addition, the influence of costunolide and dehydrocostus lactone on the expression of ATP binding cassette transporters related to multidrug resistance (ABCB1/MDR1, ABCC1/MRP1, and ABCG2/BCRP1) was examined using real-time RT-PCR. The expressions of ABCB1/MDR1 and ABCG2/BCRP1 in liposarcoma and synovial sarcoma cells were significantly downregulated by dehydrocostus lactone. Our data demonstrate for the first time that dehydrocostus lactone affects cell viability, cell cycle distribution and ABC transporter expression in soft tissue sarcoma cell lines. Furthermore, it led to caspase 3/7 activity as well as caspase-3 and PARP cleavage, which are indicators of apoptosis. Therefore, this compound may be a promising lead candidate for the development of therapeutic agents against drug-resistant tumours.
Synovial sarcoma and high grade chondrosarcoma are characterized by their lack of response to conventional cytotoxic chemotherapy, the tendency to develop lung metastases, and low survival rates.Research within the field prioritizes the development and expansion of new treatment options for dealing with unresectable or metastatic diseases. Numerous clinical trials using histone deacetylases inhibitors (HDACi) have shown specific efficacy as an active antitumor agent for treating a variety of solid tumors. However, as of yet the effect of different HDACi on synovial- and chondrosarcoma cells has not been investigated. In this study, vorinostat (SAHA), panobinostat (LBH-589), and belinostat (PXD101) decreased cell viability of synovial sarcoma (SW-982) and chondrosarcoma (SW-1353) cells in a time- and dose dependent manner and arrested SW-982 cells in the G1/S phase. Western blot analysis determined the responsible cell cycle regulator proteins. In addition, we found apoptotic induction by caspase 3/7 activity, caspase 3 cleavage, and PARP cleavage. In SW-1353 cells only SAHA showed comparable effects. Noteworthy, all HDACi tested had synergistic effects with the topoisomerase II inhibitor doxorubicin in SW-1353 chondrosarcoma cells making the cells more sensitive to the chemotherapeutic drug.Our results show for the first time that SAHA and LBH-589 reduced viability of sarcoma cells and arrested them at the G1/S checkpoint, while also inducing apoptosis and enhancing chemotherapeutic sensitivity, especially in chondrosarcoma cells. These data demonstrate the exciting potential of HDACi for use in sarcoma treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.