During the past four decades significant decrease in Arctic sea ice and a dramatic ice mass loss of the Greenland Ice Sheet (GIS) has been coincident with global warming and an increase in atmospheric CO2. In Northeast Greenland significant mass loss from the outlet glaciers Nioghalvfjerdsbrae (79NG) and Zachariae Isstrøm (ZI) and intensive seasonal breakup of the local Norske Øer Ice Barrier (NØIB) have also been observed since 2000. In order to better understand the processes driving these modern changes, studies of paleoclimate records are important and of major societal relevance. A multiproxy study including organicbiogeochemical and micropaleontological proxies was carried out on a marine sediment core recovered directly in front of 79NG. Data from Core PS100/270 evidenced a strong inflow of warm recirculating Atlantic Water across the Northeast Greenland shelf from the early
To reconstruct the climatic and paleoceanographic variability offshore Northeast Greenland during the last ~10 ka with multidecadal resolution, sediment core PS93/025 from the outermost North-East Greenland continental shelf (80.5°N) was studied by a variety of micropaleontological, sedimentological and isotopic methods. High foraminiferal fluxes, together with high proportions of ice-rafted debris and high Ca/Fe ratios, indicate a maximum in bioproductivity until ~8 ka related to a low sea-ice coverage. Sortable silt values, planktic foraminifer associations, and stable isotope data of planktic and benthic foraminifers suggest a strong westward advection of relatively warm Atlantic Water by the Return Atlantic Current during this time, with a noticeable bottom current activity. This advection may have been facilitated by a greater water depth at our site, resulting from postglacial isostatic depression. For the following mid-Holocene interval (ca. 8–5 ka), isotope data, lower foraminiferal fluxes and a shift in grain size maxima point to a lasting but successively decreasing Atlantic Water inflow, a weakening productivity, and a growing sea-ice coverage which is also revealed by the PIIIIP25 index. A final stage in the environmental development was reached at ~5 ka with the establishment of pre-industrial conditions. Low Ca/Fe ratios, low foraminiferal fluxes, low sortable silt values and the sea-ice indicating PIIIIP25 index point to a limited productivity and a weak Atlantic Water inflow by the Return Atlantic Current to our research area, as well as a higher and/or seasonally more extended sea-ice coverage during the Late Holocene. Two intervals with somewhat enhanced Atlantic Water advection around 2.0 and 1.0 ka are indicated by slightly increased foraminiferal fluxes and the reoccurrence of subpolar foraminifers. These intervals may correlate with the Roman Warm Period and the Medieval Climate Anomaly, as defined in the North Atlantic region.
Surface water characteristics of the Beaufort Sea have global climate implications during the last deglaciation and the Holocene, as (1) sea ice is a critical component of the climate system and (2) Laurentide Ice Sheet meltwater discharges via the Mackenzie River to the Arctic Ocean and further, to its outflow near the deep-water source area of the Atlantic Meridional Overturning Circulation. Here we present high-resolution biomarker records from the southern Beaufort Sea. Multi-proxy biomarker reconstruction suggests that the southern Beaufort Sea was nearly ice-free during the deglacial to Holocene transition, and a seasonal sea-ice cover developed during the mid-late Holocene. Superimposed on the long-term change, two events of high sediment flux were documented at ca. 13 and 11 kyr BP, respectively. The first event can be attributed to the Younger Dryas flood and the second event is likely related to a second flood and/or coastal erosion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.