Adaptations to a terrestrial lifestyle occurred convergently multiple times during the evolution of the arthropods. This holds also true for the “true crabs” (Brachyura), a taxon that includes several lineages that invaded land independently. During an evolutionary transition from sea to land, animals have to develop a variety of physiological and anatomical adaptations to a terrestrial life style related to respiration, reproduction, development, circulation, ion and water balance. In addition, sensory systems that function in air instead of in water are essential for an animal’s life on land. Besides vision and mechanosensory systems, on land, the chemical senses have to be modified substantially in comparison to their function in water. Among arthropods, insects are the most successful ones to evolve aerial olfaction. Various aspects of terrestrial adaptation have also been analyzed in those crustacean lineages that evolved terrestrial representatives including the taxa Anomala, Brachyura, Amphipoda, and Isopoda. We are interested in how the chemical senses of terrestrial crustaceans are modified to function in air. Therefore, in this study, we analyzed the brains and more specifically the structure of the olfactory system of representatives of brachyuran crabs that display different degrees of terrestriality, from exclusively marine to mainly terrestrial. The methods we used included immunohistochemistry, detection of autofluorescence- and confocal microscopy, as well as three-dimensional reconstruction and morphometry. Our comparative approach shows that both the peripheral and central olfactory pathways are reduced in terrestrial members in comparison to their marine relatives, suggesting a limited function of their olfactory system on land. We conclude that for arthropod lineages that invaded land, evolving aerial olfaction is no trivial task.
High throughput sequencing technologies are revolutionizing genetic research. With this “rise of the machines”, genomic sequences can be obtained even for unknown genomes within a short time and for reasonable costs. This has enabled evolutionary biologists studying genetically unexplored species to identify molecular markers or genomic regions of interest (e.g. micro- and minisatellites, mitochondrial and nuclear genes) by sequencing only a fraction of the genome. However, when using such datasets from non-model species, it is possible that DNA from non-target contaminant species such as bacteria, viruses, fungi, or other eukaryotic organisms may complicate the interpretation of the results. In this study we analysed 14 genomic pyrosequencing libraries of aquatic non-model taxa from four major evolutionary lineages. We quantified the amount of suitable micro- and minisatellites, mitochondrial genomes, known nuclear genes and transposable elements and searched for contamination from various sources using bioinformatic approaches. Our results show that in all sequence libraries with estimated coverage of about 0.02–25%, many appropriate micro- and minisatellites, mitochondrial gene sequences and nuclear genes from different KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways could be identified and characterized. These can serve as markers for phylogenetic and population genetic analyses. A central finding of our study is that several genomic libraries suffered from different biases owing to non-target DNA or mobile elements. In particular, viruses, bacteria or eukaryote endosymbionts contributed significantly (up to 10%) to some of the libraries analysed. If not identified as such, genetic markers developed from high-throughput sequencing data for non-model organisms may bias evolutionary studies or fail completely in experimental tests. In conclusion, our study demonstrates the enormous potential of low-coverage genome survey sequences and suggests bioinformatic analysis workflows. The results also advise a more sophisticated filtering for problematic sequences and non-target genome sequences prior to developing markers.
BackgroundThe White Spot Syndrome Virus (WSSV) is an important pathogen that infects a variety of decapod species and causes a highly contagious disease in penaeid shrimps. Mass mortalities caused by WSSV have pronounced commercial impact on shrimp aquaculture. Until now WSSV is the only known member of the virus family Nimaviridae, a group with obscure phylogenetic affinities. Its isolated position makes WSSV studies challenging due to large number of genes without homology in other viruses or cellular organisms.ResultsHere we report the discovery of an unusually large amount of sequences with high similarity to WSSV in a genomic library from the Jamaican bromeliad crab Metopaulias depressus. De novo assembly of these sequences allowed for the partial reconstruction of the genome of this endogenized virus with total length of 200 kbp encompassed in three scaffolds. The genome includes at least 68 putative open reading frames with homology in WSSV, most of which are intact. Among these, twelve orthologs of WSSV genes coding for non-structural proteins and nine genes known to code for the major components of the WSSV virion were discovered. Together with reanalysis of two similar cases of WSSV-like sequences in penaeid shrimp genomic libraries, our data allowed comparison of gene composition and gene order between different lineages related to WSSV. Furthermore, screening of published sequence databases revealed sequences with highest similarity to WSSV and the newly described virus in genomic libraries of at least three further decapod species. Analysis of the viral sequences detected in decapods suggests that they are less a result of contemporary WSSV infection, but rather originate from ancestral infection events. Phylogenetic analyses suggest that genes were acquired repeatedly by divergent viruses or viral strains of the Nimaviridae.ConclusionsOur results shed new light on the evolution of the Nimaviridae and point to a long association of this viral group with decapod crustaceans.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-015-0380-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.