Low-level transcutaneous vagus nerve stimulation at the tragus (LLTS) is anti-adrenergic. We aimed to evaluate the acute effects of LLTS on left ventricular (LV) function and autonomic tone. Patients with diastolic dysfunction and preserved LV ejection fraction were enrolled in a prospective, randomized, double-blind, 2×2 cross-over study. Patients received 2 separate, 1hour sessions, at least 1 day apart, of active LLTS (20Hz, 1mA below the discomfort threshold) and sham stimulation. Echocardiography was performed after LLTS or sham stimulation to assess cardiac function. A 5-minute ECG was performed to assess heart rate variability (HRV). Twentyfour patients were enrolled. LV global longitudinal strain improved by 1.8±0.9% during active LLTS compared to sham stimulation (p=0.001). Relative to baseline, HRV frequency domain components (low frequency, high frequency and their ratio) were favorably altered after LLTS compared to sham stimulation (all p<0.05). We concluded that LLTS acutely ameliorates cardiac mechanics by modulating the autonomic tone.
Aspirin (ASA) and non-steroidal anti-inflammatory drugs (NSAIDs) are a mainstay of therapy for the treatment of idiopathic pericarditis (IP). A comprehensive review consisting of pertinent clinical literature, pharmacokinetic, and pharmacodynamic considerations, has not been released in recent years. This review will facilitate the clinician’s understanding of pharmacotherapeutic considerations for using ASA/NSAIDs to treat IP. Data were compiled using clinical literature consisting of case reports, cohort data, retrospective and prospective studies, and manufacturer package inserts. ASA, ibuprofen, indometacin, and ketorolac relatively have the most evidence in the treatment of IP, provide symptomatic relief of IP, and should be tapered accordingly. ASA is the drug of choice in patients with coronary artery disease (CAD), heart failure (HF), or renal disease, but should be avoided in patients with asthma and nasal polyps, who are naïve to ASA therapy. Ibuprofen is an inexpensive and relatively accessible option in patients who do not have concomitant CAD, HF, or renal disease. Indometacin is not available over-the-counter in the USA, and has a relatively higher incidence of central nervous system (CNS) adverse effects. Ketorolac is an intravenous option; however, clinicians must be mindful of the maximum dose that can be administered. While ASA/NSAIDs do not ameliorate the disease process of IP, they are part of first-line therapy (along with colchicine), for preventing recurrence of IP. ASA/NSAID choice should be dictated by comorbid conditions, tolerability, and adverse effects. Additionally, the clinician should be mindful of considerations such as tapering, high-sensitivity CRP monitoring, bleeding risk, and contraindications to ASA/NSAID therapy.
BackgroundHeparin-induced thrombocytopenia (HIT) causes thromboembolic complications which threaten life and limb. Heparin is administered to virtually every critically ill patient as a protective measure against thromboembolism. Argatroban is a promising alternative anticoagulant agent. However, a safe dose which still provides effective thromboembolic prophylaxis without major bleeding still needs to be identified.MethodsCritically ill patients (n = 42) diagnosed with HIT at a tertiary medical center intensive care unit from 2005 to 2010 were included in this retrospective analysis. Patient records were perused for preexisting history of HIT, heparin dosage before HIT, argatroban dosage, number of transfusions required, thromboembolic complications and length of ICU stay (ICU LOS). Patients were allocated to Simplified Acute Physiology Scores above and below 30 (SAPS >30, SAPS <30), respectively. For calculations, patients (n = 19) without previous history of HIT were compared to patients (n = 23) with a history of HIT before initiation of argatroban.ResultsThe mean initial argatroban dosage was below 0.4 mcg/kg/min regardless of SAPS score. Maintenance dosage had to be increased in patients with SAPS <30 to 0.54 ± 0.248 mcg/kg/min (p >0.05) to achieve effective anticoagulation. No thromboembolic complications were encountered. Argatroban had to be discontinued temporarily in 16 patients for a total of 57 times due to diagnostic or surgical procedures, supratherapeutic aPTT and bleeding without increasing the number of transfusions. A history of HIT was associated with a shorter ICU LOS and significantly reduced transfusion need when compared to patients with no history of HIT. Cost calculation favour argatroban due to increased transfusion needs during heparin administration and increase ICU LOS.ConclusionArgatroban can be used at doses < 0.4 mcg/kg/min without an increase in transfusion requirements and at a reduced overall treatment cost compared to heparin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.