Mutant p53-carrying tumors are often more resistant to chemotherapeutical drugs. We demonstrate here that the mutant p53-reactivating compound PRIMA-1 MET acts synergistically with several chemotherapeutic drugs to inhibit tumor cell growth. Combined treatment with cisplatin and PRIMA-1 MET resulted in a synergistic induction of tumor cell apoptosis and inhibition of human tumor xenograft growth in vivo in SCID mice. The induction of mutant p53 levels by chemotherapeutic drugs is likely to increase the sensitivity of tumor cells to PRIMA-1 MET . Thus, the combination of PRIMA-1 MET with currently used chemotherapeutic drugs may represent a novel and more efficient therapeutic strategy for treatment of mutant p53-carrying tumors.
Reactivation of mutant p53 is likely to provide important benefits for treatment of chemotherapy-and radiotherapy-resistant tumors. We demonstrate here that the maleimide-derived molecule MIRA-1 can reactivate DNA binding and preserve the active conformation of mutant p53 protein in vitro and restore transcriptional transactivation to mutant p53 in living cells. MIRA-1 induced mutant p53-dependent cell death in different human tumor cells carrying tetracycline-regulated mutant p53. The structural analog MIRA-3 showed antitumor activity in vivo against human mutant p53-carrying tumor xenografts in SCID mice. The MIRA scaffold is a novel lead for the development of anticancer drugs specifically targeting mutant p53.
Reactivation of mutant p53 in human tumor cells should induce cell death by apoptosis and thus eliminate the tumor. Several small molecules that reactivate mutant p53 have been identified. Here we show that STIMA-1, a low molecular weight compound with some structural similarities to the previously identified molecule CP-31398, can stimulate mutant p53 DNA binding in vitro and induce expression of p53 target proteins and trigger apoptosis in mutant p53-expressing human tumor cells. Human diploid fibroblasts are significantly more resistant to STIMA-1 than mutant or wild type p53-carrying tumor cells. STIMA-1 may provide new insights into possible mechanisms of mutant p53 reactivation and thus facilitate the development of novel anticancer drugs that target mutant p53-carrying tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.