Summary. Background: In a small group of typical hemophilia A (HA) patients no mutations in the F8 coding sequence (cDNA) could be found. In the current study, we performed a systematic screening of genetic and nongenetic parameters associated with reduced FVIII:C levels in a group of mostly mild HA (only one moderate) patients with no detectable mutations in F8 cDNA. Methods: We determined FVIII and VWF activity and antigen levels and performed VWF-FVIII binding (VWF:FVIIIB) and VWF-collagen binding assays (VWF:CB) as well as VWF multimer analysis. VWF was completely sequenced to exclude mutations. The F8 locus, including the introns, was sequenced using overlapping long-range PCRs (LRPCRs) combined with a next generation sequencing (NGS) approach. Moreover, the F8 mRNA was analyzed quantitatively and qualitatively by real-time PCR (qRT) and overlapping reverse transcription (RT) PCRs, respectively. Results: All VWF tests were normal. The LRPCRs demonstrated the integrity of the F8 locus. Eight unique polymorphisms were found in the patients, with two being recurrent. Furthermore, RT-PCRs analysis confirmed that two of the unique variants create detectable new cryptic splice sites in the patients that result in the introduction of intronic DNA sequences into the mRNA and create premature stop codons. Conclusion: By systematically excluding all possible causes of HA, we could with great certainty conclude that deep intronic mutations in F8, although rare, cause abnormal mRNA splicing, leading to mild HA.
Mutations in NLRP7 (NOD-like-receptor family, pyrin domain containing 7) are responsible for a type of recurrent pregnancy loss known as recurrent hydatidiform mole (HYDM1). This condition is characterized by abnormal growth of the placenta, a lack of proper embryonic development and abnormal methylation patterns at multiple imprinted loci in diploid biparental molar tissues. The role of NLRP7 protein in the disease manifestation is currently not clear. In order to better understand how the effects of HYDM1 are associated with mutations on the structure of NLRP7, we performed an inter-domain interaction screen using a yeast two-hybrid system. Additionally, we generated in silico structural models of NLRP7 in its non-activated and activated forms. Our observations from the yeast two-hybrid screen and modeling suggest that the NACHT-associated domain (NAD) of the NLRP7 protein is central to its oligomeric assembly. Upon activation, the NAD and a small part of the leucine rich repeat (LRR) of one molecule emerged out of the protective LRR domain and interact with the NACHT domain of the second molecule to form an oligomer. Furthermore, we investigated the molecular basis for the pathophysiological effect of four missense mutations, three HYDM1-causing and one rare non-synonymous variant, on the protein using confocal microscopy of transiently transfected NLRP7 in HEK293T cells and in silico structural analysis. We found that with the two clinically severe missense mutations, L398R and R693W, the normal molecule to molecule interaction was apparently affected thus decreasing their oligomerization potential while aggresome formation was increased; these changes could disturb the normal downstream functions of NLRP7 and therefore be a possible molecular effect underlying their pathophysiological impact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.