In gram-negative bacteria, iron acquisition proteins are commonly regulated by Fur (ferric uptake regulator), which binds iron-regulated promoters (the Fur box). We hypothesized that Coxiella burnetii requires iron and employs an iron-regulatory system and used various approaches to define a Fur regulon. Cloned C. burnetii fur complemented an Escherichia coli fur deletion mutant. A ferrous iron transporter gene (CBU1766), a putative iron binding protein-encoding gene (CBU0970), and a cation efflux pump gene (CBU1362) were identified by genome annotation and using a Fur titration assay. Bioinformatically predicted Fur box-containing promoters were tested for transcriptional control by iron. Five genes demonstrated at least a twofold induction with minimal iron. Putatively regulated genes were evaluated in a two-plasmid regulator/promoter heterologous expression system. These data suggested a very limited Fur-regulated system in C. burnetii. In an in vitro tissue culture model, a significant increase in bacterial growth was observed with infected cells treated with deferoxamine in comparison to growth under iron-replete conditions. In an iron-overloaded animal model in vivo, the level of bacterial growth detected in the iron-injected animals was significantly decreased in comparison to growth in control animals. In a low-iron-diet animal model, a significant increase in splenomegaly was observed, but no significant change in bacterial growth was identified. The small number of predicted iron acquisition systems, few Fur-regulated genes, and enhanced replication under a decreased iron level predict a requirement of a low level of iron for survival, perhaps to avoid creation of additional reactive oxygen radicals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.