Extracts of ripening olive fruits (Olea europaea L. cv. Kalamata) ‐were analyzed for the presence of lipoxygenase activity and for the content of phenolic compounds, which are lipoxygenase inhibitors. Two distinct lipoxygenase activities were identified by their pH optima and sensitivity to the inhibitor nordihydroguaiaretic acid (NDGA). Both activities were low during early ripening stages, and increased sharply between 57 and 94 days postanthesis, reaching a plateau at about 120 days. The content of phenolic compounds, mainly oleuropein, changed in the opposite way, suggesting their involvement in the regulation of the two lipoxygenase activities during the olive fruit development. The two lipoxygenase activities could have a role in fruit maturation and senescence.
Ornithine transcarbamoylase from ovine liver has been purified to homogeneity. Like all anabolic OTCs, the ovine enzyme is a trimer, constituted by identical subunits of 34 kDa. Sequence analysis of the 54 N-terminal residues of ovine OTC shows a high degree of homology with the human enzyme. The optimum pH and the Michaelis constants for the catalytic reaction were determined. The ovine enzyme is the most thermostable one among mammals OTCs, its critical temperature being 6 degrees C higher than those measured for the other enzymes. The enzyme has been crystallised and the structure determined at 3.5 A resolution. Crystals belong to the cubic P4(3)32 space group, with a = b = c = 184.7 A and a solvent content of about 80%. There is no evidence of any ligand in the active site cavity, indicating that the crystals contain an unliganded or T state of the enzyme. The unliganded OTCase enzyme adopts a trimeric structure which, in the crystal, presents a three-fold axis coincident with the crystallographic one. The conformation of each monomer in the trimer is quite similar to that of the liganded human protein, with the exception of a few loops, directly interacting with the substrate(s), which are able to induce a rearrangement of the quaternary organisation of the trimer, that accounts for the cooperative behaviour of the enzyme following the binding of the substrates.
Prickly pear LOX activity was detected in the membrane fractions of the fruit extracts at various stages of ripening.
LOX specific activity was very low in the fruit of wild plants at the green stage (0.49 ± 0.04) and increased with fruit ripening, more than doubling in the ripened fruit (1.22 ± 0.06). Moreover, it was not influenced by the cultivar, whereas it was considerably increased (13.3 ± 1.4) by agronomic processes to which prickly pear plants are submitted to improve the organoleptic properties of fruits.
The apparent molecular mass of the enzyme was estimated to be 96 kDa. The enzyme had an optimum pH value of 5.5 and a clear specificity for linolenic acid, which was oxidized at a rate one and a half times that of linoleic acid, under the same reaction conditions.
The involvement of prickly pear LOX in the flavor biosynthesis of the fruit is supposed.
PRACTICAL APPLICATIONS
Over the last decade in particular, prickly pear fruits have been widely used as food, not only the whole fruit but also processed to make juices, jams and liquors popular the world over. Prickly pear production has therefore risen considerably and consequently both the labor force employed and revenues generated have increased. For those engaged in this sector it is therefore a prime objective to maximise the profile and thereby profitability of the fruit. It is here that our research into lipoxygenase activity can play a part, as it is known that this enzyme is responsible for the organoleptic properties of fruits and vegetables. The results are presented below. The relationship between lipoxygenase specific activity and specific agronomic processes utilized to improve the fruit quality is also addressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.